Project DE-FE 0031940

### Efficient, Reliable, and Cost-Effective Reversible Solid Oxide Cell Technology for Hydrogen and Electricity Production

and

Project DE-FE 0032107

### Development of Novel 3D Cell Structure and Manufacturing Processes for Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells

22<sup>nd</sup> Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting November 16-18, 2021

## DE-FE0031940 Project Overview

- <u>Project</u>: Efficient, Reliable, and Cost-Effective Reversible Solid Oxide Cell Technology for Hydrogen and Electricity Production (DE-FE0031940)
- <u>Project Objective</u>: Develop and demonstrate proposed reversible solid oxide cell (RSOC) technology with the three main specific objectives
  - (i) To validate design, materials and process of proposed technology for both hydrogen and electricity production
  - (ii) To demonstrate operation of the proposed technology at relevant conditions with improved performance, reliability and endurance
  - (iii) To confirm the cost effectiveness of the proposed technology via a techno-economic assessment of a selected application
- <u>Period of Performance</u>: 9/27/2020 9/26/2023
- <u>DOE/NETL Project Manager</u>: Ms. Sarah Michalik
- Project Team:
  - □ University of California San Diego (UCSD)
    - Dr. Nguyen Minh (PI), Dr. Eric Fullerton, Dr. Shirley Meng, Dr. Ping Liu
  - OxEon Energy, LLC (OxEon)
    - Dr. Elango Elangovan, Mr. Joe Hartvigsen

### DE-FE0031940 RSOC Technology

- RSOC technology to be developed in this project has two key elements
  - A compact, versatile and low-cost stack architecture: arrays of cell modules in electrical parallel and series connection
  - Superior-performance, fuel-flexible reversible cells

# DE-FE0031940 Cell Configurations

 Cell Structure: (A) Substrate supported thin-film (TF) reversible solid oxide cell (RSOC) (500°-700°C) and (B) Hydrogen electrode (HE) supported RSOC (700°-800°C)



- Cell and substrate materials:
  - Electrolyte : yttria stabilized zirconia (YSZ)
  - Hydrogen electrode: Ni-YSZ
  - Oxygen electrode: lanthanum nickel cobaltite (LNC)-gadolinium doped ceria (GDC)
  - Electrolyte/electrode interlayer: GDC
  - Substrate for TF-RSOCs: Metal-coated anodized aluminum oxide (AAO)

### DE-FE0031940 Cell Designs - Motivation

- Leverage on previous work on cells fabricated by sputtering
  - Record performance for sputtered cells in fuel cell mode at reduced temperatures (e.g., >3.0W/cm<sup>2</sup> at 650°C with hydrogen fuel)
- Proposed two types of cell configuration
  - Demonstrate the capability of the proposed stack design to *incorporate different types of cell operating at different temperatures*
  - Use the more advanced *HE-supported cell as a backup with regards to risk* mitigation
  - Leverage and apply the development of *sputtered oxygen electrodes for TF cells to HE-supported cells to improve performance* as compared with state-of-the-art
- Proposed LNC-GDC oxygen electrode
  - Suitable for operation in both fuel cell (SOFC) and electrolysis (SOEC) modes
  - LNC (La<sub>0.97</sub>Ni<sub>0.5</sub>Co<sub>0.5</sub>O<sub>3-δ</sub>) contains *no strontium*, thus *unwanted Sr segregation and interactions with volatile Cr species to form strontium chromium oxides are avoided*

# DE-FE0031940 **Project Activities**

- Application Selection and System Design and Analysis
- Techno-Economic Assessment
- RSOC Cell Development
- RSOC Stack development
- Stack Operation Demonstration

## **PROGRESS/ACCOMPLISHMENTS**

DE-FE0031940

## **Application Selection**

#### • Reversible solid oxide cell (RSOC) systems selected

- Small-scale distributed RSOC systems
- Hydrogen production: 1,500 kg H<sub>2</sub>/day
- Power generation: 480 kW (on natural gas)

#### Applications selected

- On-site hydrogen fueling stations
  - for passenger car, and light trucks
  - for school buses, passenger buses, and heavy trucks
  - for forklifts
- Distributed hydrogen/power systems
  - Hydrogen/power systems for low population areas/small towns/offices/buildings
  - Hydrogen/power systems for remote areas



On-site hydrogen fueling station

Distributed hydrogen/power system

# **RSOC System Schematic**



# **Cell Fabrication**







## **Cell Reversible Performance**



Superior reversible performance for both thin film (TF) cell and hydrogen electrode (HE)-supported cell at reduced temperatures (≤ 700°C)

### **Scale-Up of Sputtering Process**

Demonstration of cell fabrication on 10cm×10cm substrate



10cm×10cm cell



LNC-GDC oxygen electrode (cross section)



Demonstration of sputtering process scale-up

### **Evaluation of LNC-GDC Oxygen Electrode**

Performance of RSOC cell\* with sputtered LNC-GDC oxygen electrode



Performance comparison of RSOC cells\* with sputtered LNC-GDC and sputtered LSC-GDC oxygen electrodes

#### Voltage/current curves



#### Electrode area-specific resistance (ASR)

| Temperature<br>(○C) | LNC-GDC                    | LSC-GDC                    |
|---------------------|----------------------------|----------------------------|
|                     | ASR (ohm cm <sup>2</sup> ) | ASR (ohm cm <sup>2</sup> ) |
| 600                 | 0.165                      | 0.467                      |
| 650                 | 0.082                      | 0.259                      |
| 700                 | 0.076                      | 0.221                      |

### LNC-GDC oxygen electrode outperforms state-of-the-art LSC-GDC in both SOFC/SOEC modes at reduced temperatures

### Nano-metal Coating of Anodized Aluminum Oxide (AAO) Substrate

Develop a nickel plating process for porous AAO substrates



Nickel-plated AAO, cross-section, pore middle (pore size about 200 nm)



Nickel-plated AAO, top surface

#### **Demonstration of nickel coating of AAO nano-porous structures**

## DE-FE0032107 Project Overview

- <u>Project</u>: Development of 3D Cell Structure and Manufacturing Processes for Highly Efficient, Durable and Redox Resistant Solid Oxide Electrolysis Cells (DE-FE0032107)
- <u>Project Objective</u>: Develop and demonstrate highly efficient, durable and redox resistant solid oxide electrolysis cells (SOECs) with a focus on
  - (i) A cell design with the hydrogen electrode composed of two layers a 3D hydrogen electrode support layer and an exsolved perovskite hydrogen electrode active layer
  - (ii) A manufacturing scheme incorporating advanced inkjet printing and photonic sintering for fabrication of the cell configuration
- <u>Period of Performance</u>: 10/01/2021 9/30/2023
- DOE/NETL Project Manager: Ms. Sarah Michalik
- Project Team:
  - □ University of California San Diego (UCSD)
    - Dr. Nguyen Minh (PI)
  - RocCera LLC (RocCera)
    - Dr. Sam Ghosh, Mr. Arkady Malakhov
  - □ Rochester Institute of Technology (RIT)
    - Dr. Denis Cormier
  - Oak Ridge National Laboratory (ORNL)
    - Dr. Edgar Lara-Curzio

## **Cell Design**

- Design features:
  - Hydrogen electrode supported configuration
  - Unique hydrogen electrode concept a support layer with 3D structural geometry coupled with an exsolved perovskite active layer
- Motivation:
  - 3D hydrogen electrode support for redox resistance
  - Exsolved perovskite hydrogen electrode active layer (high performance, improved stability, redox resistance)



## DE-FE0032107 Fabrication Process

- Similar to but different from the conventional process in two areas:
  - Ink jet printing (instead of tape casting) for the 3D hydrogen electrode support
  - Photonic sintering (instead of conventional firing) for the interlayer and oxygen electrode



# DE-FE0032107 **Project Activities**

- Fabrication Development of 3D Hydrogen Electrode Support, Hydrogen Electrode Active Layer and Electrolyte by Cofiring
- Fabrication Development of Interlayer and Oxygen Electrode by Photonic Sintering
- Characterization and Evaluation of Electrodes and Cells
- Demonstration of Cell Performance, Redox Resistance and Durability

## **PROGRESS/ACCOMPLISHMENTS**

**DE-FE32107** 

# DE-FE0032107 Progress

- Project start date of October 1<sup>st</sup> 2021
- Work plan developed and technical activities initiated

## Acknowledgments

- DOE/NETL SOFC project management, especially Ms.
   Sarah Michalik
- UCSD SOFC/SOEC project team
- OxEon, RIT, RocCera and ORNL team members