DE-FE0026211 Innovative, Versatile, and Cost-Effective Solid Oxide Fuel Cell Stack Concept

Nguyen Q. Minh

Center for Energy Research University of California San Diego La Jolla, CA

22nd Annual SOFC Project Review Meeting

November 2021

Innovative, Versatile and Cost-Effective SOFC Stack Concept Project

- <u>Project</u>: Innovative, Versatile and Cost-Effective Solid Oxide Fuel Cell Stack Concept (DE-FE0026211)
- <u>Project Objective</u>: Develop and evaluate a versatile stack configuration based on a primesurface interconnect design that can incorporate different types of cell construction for a broad range of power generation applications
- <u>DOE/NETL Project Manager</u>: Mr. Jason Montgomery
- Project Team:
 - □ University of California San Diego (UCSD)
 - Center for Energy Research: Dr. Nguyen Minh (PI), Dr. Tuyen Tran
 - Department of Electrical Engineering and Center for Memory and Recording Research: Dr. Eric Fullerton
 - Department of NanoEngineering: Dr. Shirley Meng
 - □ OxEon Energy LLC (OxEon)
 - Dr. Elango Elangovan, Mr. Joe Hartvigsen

Stack Design Concept

Incorporating Conventional Cells

Stack Design Concept

Incorporating Supported Thin-film Cells

Project Technical Activities Status/Progress/Accomplishments

- Prime surface interconnect design and fabrication development
 Prime surface interconnect design specified and fabrication process developed
- Supported thin-film cell structure development
 - Sputtering fabrication process developed for making thin-film cells and record cell performance demonstrated at reduced temperatures
- Stack cost assessment

Estimated stack cost indicating potential for cost competitiveness

• Stack development

Full scale stack design completed

Stack operation demonstration

Stack components being manufactured and operation demonstration to be initiated

Prime Surface Interconnect Design

Mechanical Loading

Dimension: Length x Width x Thickness	60mm x 60mm x 2.5mm	
Thickness of the interconnect plate	0.3mm	
Total height of the interconnect	2.5mm	
Length of the interconnect	60mm	
Width of the interconnect	60mm	
Diameter of the cones at the	4mm	
base level		
Cone angle	60 degrees	
Mass of the interconnect	7.66 gram	

Flow Distribution

Inlet gas velocity = 0.3 m s⁻¹

Prime Surface Interconnect Fabrication

Two-step stamping

Interconnect with 2mm in height

Well formed egg carton shape with minor thinning

Sputtering Process

for fabricating supported thin-film SOFCs

- Sputtering for making thin-film SOFCs on metal supports and other substrates
- Thin-film cells sputtered on porous anodized aluminum oxide (AAO) substrates
- Sequential sputtering of anode, Reactive electrolyte, interlayer and cathode films on porous substrates

Sputtered Thin-Film Cell Microstructure

- → LSCF-YSZ (800nm)
- → GDC (250nm)
- → YSZ (1.4 um)
 - → Ni-YSZ (650nm)
 - → AAO (100um)

Ultra Fine Nano Structured Electrodes and Fully Dense Electrolyte

Superior Performance of Sputtered Cells

Hydrogen Fuel

Superior cell performance reported at these reduced temperatures

Improved Sputtered Cell Performance (Hydrogen)

LSC-GDC/GDC/YSZ/NI-LSCF

1.2

Performance improvement with Ni-LSCF anode

Best cell performance on hydrogen reported at these reduced temperatures

Superior Performance of Sputtered Cells Dry Methane Fuel

Extraordinarily high cell performance on dry methane reported at these reduced temperatures

Improved Sputtered Cell Performance (Dry Methane)

1.2 2.0 600°C **CH**₄ Fuel 1.0 GDC-LSC 1.5 0.5 Power density (W cm²) GDC 0.8 S 0.0 Cell voltage YSZ Ni-Ru-GDC 0.2 ---- Ni-Ru-GDC 0.0 0.0 2 4 5 0 1 3 Current density (A cm⁻²) 1.2 3.0 600°C 1.0 2.5 CH₄ Fuel Cell Voltage (V) 0 Power Density (W cm²) 2.0 Addition of Ru-LSCF 1.5 YSZ 1.0 Ni-Ru-GDC 0.2 0.5 Ni-Ru-LSCF 0.0 0.0 2 0 1 3 4 5 Current Density (A cm²)

Performance Improvements with addition of Ru and Ru-LSCF in the anode

Addition of Ru in anode

in anode

Fabrication of Porous Ceramic Composite Electrodes

Sputtered Cathode Performance

Microstructural characterization and electrochemical measurements show that the composition and nanostructure of the cathode are the two main factors that impact the power density of thin-film SOFCs

Nanostructured cathodes

Cell performance at different cathode compositions

	OCV (V)		Pe	ak PD (W/cn	n ²)	
Temperature	500°C	450°C	500°C	550°C	600°C	650°C
Pure LSC	0.92	< 0.01	0.01	0.04	0.08	0.10
GdCe10LSC	1.10	0.08	0.26	0.83	1.86	2.31
GdCe20LSC	1.12	0.14	0.48	1.19	2.56	3.01
GdCe30LSC	1.10	0.12	0.32	0.81	2.16	3.37
GdCe50LSC	1.08	0.04	0.17	0.53	0.81	1.68

Electrochemical impedance spectroscopy (EIS) measurements

Stack Design for Cost Estimation

SOFC Repeat Unit

Stack Cost Estimation

Key Assumptions

The cost basis and key assumptions for the cost estimate:

- 5 kW SOFC stack operating on natural gas and 50,000 units per year (250 MW/yr).
- The cost is estimated based on a stack power at 0.7 V, 80% fuel utilization (U_f), 700°C.
- The cost estimation based on sputtered cells fabricated in plant, all other components are procured from suppliers and vendors.

The cost estimate establishes a factory cost, which includes:

- Equipment and Plant Depreciation
- Tooling Amortization
- Facility and Equipment Maintenance
- Utilities
- Cost of Capital
- Purchased Materials
- Fabrication, Assembly and Testing Labors
- Indirect Labor and Materials

The following costs are not included in the cost estimate:

- Research and Development
- Sales and Marketing
- General and Administration
- Warranty & Taxes

Cell / Stack Performance for Cost Estimation

Power Output	5 kW
Temperature	700°C
Fuel	Natural Gas
Fuel Utilization	80%
Power density	1.9 W/cm ²
Current density	2.7 A/cm ²
Voltage	0.7 V
Cell size	10cm X 10cm
No. cell per 5 kW stack	32 cells

Stack Material Cost Estimation

Estimation Process for Other Stack Costs

Total Stack Stack Cost Breakdown

For Sputtered Cell on Metal Support

	Cost per kW
Materials	\$70.7
Labor	\$21.0
Equipment	\$11.4
Facility & Utilities	\$9.2
Total	\$112.3

Total Stack Cost Breakdown

For Sputtered Cell on AAO Support

	Cost per kW
Materials	\$230.7
Labor	\$21.0
Equipment	\$11.4
Facility & Utilities	\$9.2
Total	\$272.3

Total Cost Breakdown

Summary of Key Achievements

- Design and fabrication process for prime-surface interconnects
- Sputter process for fabricating thin-film SOFCs and demonstration of recorded performance at reduced temperatures with hydrogen and methane fuel
- Design and specifications for full-size stacks
- Stack cost assessment

Acknowledgments

- DOE/NETL SOFC project management, especially Dr. Patcharin Burke and Mr. Jason Montgomery
- UCSD and OxEon SOFC project team