

Low Cost, Large Area SOEC Stack for H₂ and Chemicals

O.A. Marina, K. Meinhardt, N. Royer, L. Seymour, J.T. Zaengle, C. Coyle, C. Bonham, J. Bao, N. Karri, N. Canfield, G. Whyatt

> Pacific Northwest National Laboratory Olga.Marina@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

R&D to Reduce Stack Cost and Improve Durability

Technical Barriers and Gaps

HTE stack performance and durability remains understudied due to industry proprietary R&D: Stack durability is rarely reported Cost at scale is not known Commercially relevant repeat units are not available

PNNL has established cells/stacks fabricating and modeling capabilities and expertise from multiple DOE SOFC R&D programs and private investments

5	
r Stack Goals by 2025	
ital Cost	\$100/kW
cy (LHV)	98% at 1.5 A/cm ²
Lifetime	60,000 hr

PNNL Tests Button Cells, Full Size Cells and Stacks

Pacific Northwest

High throughput button cell testing (~50 cells)

- I-V and EIS measurements •
- *p*H₂O=1-99% ۲
- Impurities ۲

- active area **16 cm²**
- Relevant steam utilizations
- Higher currents
- T gradients
- Interconnect

- •
- Seals •
- •
- •
- •

Short 1-5 kW stack testing

active area **300 cm²**

Components Steam delivery and utilization Heat management Durability

Develop and Build an Efficient 5 kW Solid Oxide Electrolyzer and Demonstrate Operation under Simulated, but Commercially Relevant Conditions

- Design electrode cassette modules of a commercially relevant size that include a large 300 cm² active area cell, a metal frame and channels for gas flow.
- Develop and employ optimized materials to provide the best possible combination of performance, lifetime and cost.
- Produce and demonstrate an operation of a stack under realistic conditions.

Identifying Pathways to Lower Stack Cost: Large Format Cells

Cell Production Established

Impact:

- Reduced number of all parts by a factor of 3 ٠
- Reduced number of interfaces, thus failures/degradations

Difficulty:

- Materials properties
- Equipment size
- Variability in materials sources, different materials purity
 - Successfully produced large cells
 - Decreased YSZ thickness to reduce firing steps, cost and improve the performance
 - Oxygen electrode is being optimized
 - Initiated QA/QC

Demonstrated Cell Stability in Long-Term SOEC Tests Using Multiple Repeats

- Validated electrode activity and cell performance at 750°C using button cells fabricated in a similar fashion
- Established a baseline cell performance for 2800 hours
- Identified and eliminated the degradation mechanism responsible for the initial performance loss

Pacific

Northwest

Demonstrated Cell Stability in High Steam Contents under Varied Loads

- Validated cell performance in single smaller-size planar cells for 1000 hours
- Cell Current (A) Assessed cell stability in different gas compositions with H₂O varied from 20 to 90% and steam utilization 50-70%
- Performed multiple load cycling

Time (Hours)

Optimizing Fabrication Steps to Lower ASR

- Exploring multiple approaches of cell fabrication to reduce ASR
- Not changing electrode chemistry
- Long-term testing to be assessed

Demonstrated Cell Activity to Co-electrolyze CO₂ and H₂O to Syngas and Reversibility in the **Presence of High CO₂ Concentrations**

- different CO₂-H₂O compositions with CO_2 varied from 25 to 90%
- Demonstrated syngas of cell operation

Assessed cell stability in

production and reversibility

Modified the PNNL SOFC-MP Simulation Software to Simulation SOEC with Various Gas Species

- Calibrated the model to match both SOEC performance degradation and current-voltage relationships ullet
- Completed sensitivity study of SOEC performance with SOFC/SOEC-MP solver and reduced order model for 2-300 cm² cells; Completed predictive modeling for syngas production rate using varied CO₂/H₂O ratios
- Contracted the DNN-based ROMs; cell voltage, CO₂/H₂O ratio, and inlet temperature were the top input parameters that impact the cell performance the most
- Initiated long-term SOEC degradation modeling using SOx poisoning and SrZrO₃ formation ullet

Stack Structural Integrity and Reliability Analysis Predict Low Failure Probability

- Designed stack components and validated the design using thermomechanical analysis for structural integrity to predict stack and enclosure level displacements, stresses and investigate any TEC mismatch issues
- The reliability analysis mapped potential failure probabilities concentrated locally to specific areas of the cell depending on operating voltages and operating conditions

Using 300 cm² Active Area Cells Reduces Stack Parts by 67%

- Designed and fabricated metal cassettes
- Developed a process for sealing large cells into the metal frames •
- Initiated short stack assembly and shakedown testing; addressed multiple issues
- Performed short stack baseline testing under realistic steam utilization and hydrogen production rates

Single unit stack with a 300 cm² active area cell

Meinhardt et al, ECS Trans., SOFC-17

- Aiming to enable DOE to develop appropriate SOEC stack cost, performance, and durability targets by linking fabrication and manufacturability to performance, degradation, and cost
- Determine actual stack efficiency at 80-90% steam utilizations
- Conduct stack performance and durability assessments
- Conduct bottom-up manufacturing cost assessment

Acknowledgements

U.S. DEPARTMENT OF ENERGY

Fossil Energy and Carbon Management (FECM), division of Hydrogen with Carbon Management (HCM). Award number is **FWP-77108**

EERE-HFTO

