

PROVIDING ENERGY. IMPROVING LIVES.

A Highly Efficient and Affordable Hybrid System for Hydrogen and Electricity Production

Ying Liu: Phillips 66 Meilin Liu: Georgia Tech

DE-FE0031975

22nd Annual SOFC Project Review Meeting November 18, 2021

Outline

- Project Overview
- Project Objective
- Technical Approach
- Project Progress
 - Electrolyte Development
 - Air Electrode and Catalyst Development
 - Button Cell Performance
 - Powder Synthesis Scale up and Large Cell Fabrication
- Summary and Future Work
- Acknowledgement

Overview

- **Project Title:** A Highly Efficient and Affordable Hybrid System for Hydrogen and Electricity Production
- Award No.: DE-FE0031975
- **Project Timeline:** 09/27/2020 09/26/2023
- DOE/NETL Program Manager: Andrew O'Connell

PHILLIPS 66	Ying Liu (PI) Imona Omole Denay Huddleston Byunghyun Min	Mingfei Liu Mark Jensen Miranda Rine Sarah Bushyhead	• • •	Powder synthesis Large cell manufacturing Stack fabrication and testing System design and operation
Georgia Tech	Meilin Liu (Co-Pl) Yucun Zhou Xin Qian	Gyutae Nam Nick Kane Conor Evans	•	Cell materials development Catalyst development Button cell evaluation

Phillips 66 SOFC R&D

Company Overview

- Diversified manufacturing and logistics company
- Portfolio includes Midstream, Chemicals, Refining, and Marketing & Specialties businesses
- Process, transport, store, and market fuels and products globally
- #23 on the Fortune 500 list

SOFC Program

- Launched in 2010
- Proprietary high-performing materials
- Cost-effective fabrication methods
- Unique stack designs
- Fully automated control systems
- Full spectrum of cell/stack manufacturing and testing facilities

Fabrication and Testing Facilities

Tape Caster

PRISM Intractor 20

Spray Coater

High Power Laser

- >10,000 sq. ft. floor space
- 20+ fuel cell and stack test stations
- Fuel (H₂, CH₄, pipeline NG) processing and treatment
- Steam generation and control
- Large load banks and power supplies
- System instrumentation, control and communication

High Temp Furnace

Stack Tester

System Testing Enclosure

Project Objectives

- To design, fabricate, and demonstrate a robust, highly efficient, and affordable reversible solid oxide cell (rSOC) system based on a proton conducting electrolyte membrane for hydrogen and power generation.
- The 1-kW prototype system will meet the following technical specifications:
 - Operate the system in a real-world environment.
 - ≥50% electrical efficiency (LHV of H₂) at 0.5 A cm⁻² in fuel cell mode on H₂ at 650 °C.
 - >85% electrical efficiency (LHV of H₂) in electrolysis mode at ≤ 650 °C.
 - Demonstrate the potential to < \$2/kg hydrogen.

Technical Approach

Major Tasks	Action Plan		
	Modify composition of state-of-the-art $BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-\delta}$ electrolyte		
Materials Development	 Develop air electrodes with high ORR/OER activities and excellent tolerance to H₂O and Cr-poisoning 		
	 Scale up powder synthesis to >1 kg /day 		
Cell Fabrication	 Fabricate button cells showing higher performance and good durability 		
	- Fabricate 10 cm \times 10 cm cells by low cost and scalable methods		
	CFD assisted stack design		
Stack Assembly	 QC for stack components and assembly 		
	 Demonstrate high stack performance in both SOFC and SOEC modes 		
	 Design a 1.0 kW autonomous system with cloud-based control and data communication 		
System Demonstration	 Evaluate system performance and achieve efficiency, lifetime and cost targets Techno-economic analysis to demonstrate \$2/kg H₂ 		

PHILLIPS

Project Progress

Timeline	Milestone	% Complete
12/31/2020	Electrolyte conductivity >0.01 S cm ⁻¹ and ionic transference numbers >0.95 at 600 °C.	100%
12/31/2020	Electrolyte degradation rate <2%/1000 h at 600 °C.	100%
03/31/2021	Air electrode with catalysts polarization resistance <0.2 Ω cm ² at 600 °C.	100%
06/30/2021	Air electrode with catalysts degradation <2%/1000 h at 600 °C under H_2O and Cr.	100%
07/30/2021	Scale up ceramic powder synthesis to > 1.0 kg per day	100%
09/30/2021	Button cells 1 W cm ⁻² at 0.7 V and 600 °C in fuel cell mode, 1.5 A cm ⁻² at 1.3 V and 600 °C in electrolysis mode, and a Faradaic efficiency of 95%.	100%
03/31/2022	Button cells degradation <2%/1000 h at \leq 650 °C	50%

Electrolyte Development

Limitations

 $\begin{array}{l} \mathsf{BaMO}_3 + \mathsf{H}_2\mathsf{O} \ \rightarrow \mathsf{Ba}(\mathsf{OH})_2 + \mathsf{MO}_2 \\ \\ \mathsf{BaMO}_3 + \mathsf{CO}_2 \ \rightarrow \mathsf{BaCO}_3 + \mathsf{MO}_2 \end{array}$

Electrolyte Development, BHCYYb

 H_2 with 3% H_2O //ambient air

Hf based electrolytes show conductivity >0.01 S cm⁻¹ at 600 °C (3%H₂O-Ar)
 Ionic transference number >0.95 at 600 °C

10

Electrolyte Development, BHCYYb

No observable degradation in water in short-term testing

PHILLIPS 66

High-Performance Catalyst Coated Air Electrode

12 PHILLIPS

Stable Catalyst Coated Air Electrode

Catalysts coated $PrBa_{0.8}Ca_{0.2}Co_2O_{5+\delta}$ (PBCC) air electrodes show a low degradation rate of <1% pre 1000 h in H₂O and Cr environment

HILLIPS

66

Cell Configuration and Testing Setup

Performance of Single Cells in Fuel Cell Mode

Single cells demonstrated peak power density of **1.2 W cm⁻² at 600** °C.

Cell Performance in Electrolysis Mode

• Single cells demonstrated 2 A cm⁻² at 600 °C in the H₂O electrolysis mode

16

PHILLIPS

66

Stability Testing

Single cells demonstrated a low degradation rate of 1%/1,000 h.

PHILLIPS

66

Powder Synthesis Scale-up

Spray Pyrolysis

Ball Mill

Cathode Powder

 $\label{eq:ssc:sm} \textbf{SSC:} \ Sm_{0.5}Sr_{0.5}CoO_3 \quad \textbf{PB9CN:} \ PrBa_{0.9}Co_{1.96}Nb_{0.04}O_5$

- Continuous or batch synthesis process
- Narrow particle size distribution, $d_{50} < 0.5 \mu m$.
- Homogeneous composition
- Easy to scale-up
- Up to 1000 g/day powder production rate,

Summary

- Developed proton conducting electrolyte BaHf_{0.3}Ce_{0.5}Y_{0.1}Yb_{0.1}O₃
 - Conductivity >0.01 S cm⁻¹
 - Good stability in H₂O and CO₂ in short term testing
- Developed catalyst coated $PrBa_{0.8}Ca_{0.2}Co_2O_{5+\delta}$ (PBCC) air electrode
 - Polarization resistance $R_p < 0.1 \Omega \text{ cm}^2$, 600 °C
 - No obvious degradation in 3% H_2O at 600 °C for over 500 h
- Fabricated reversible button cells
 - Peak power density of 1.2 W cm⁻² at 600 °C in fuel cell mode
 - Current density of **2** A cm⁻² at 1.3 V, 600 °C in electrolysis mode
 - 1,000 h operation at 500 °C with a degradation rate of ~1% per 1,000 h
- Established ceramic powder synthesis capability up to 1000 g / day

Proposed Future Work

Date	Milestone	% Complete
03/22	Complete durability evaluation of the button cell for at least 1000 h with a degradation rate of <2% per 1000 h at \leq 650 °C	70%
06/22 Go/No-Go Decision Point	Complete the fabrication of 10x10 cm ² cells (with an effective area of 81 cm ²) with \geq 70% roundtrip efficiency at 0.5 A cm ⁻² in both SOFC and SOEC modes at \leq 650 °C. Complete durability evaluation of the 10x10 cm ² cell for at least 1000 h with a degradation rate of <2% per 500 h at \leq 650 °C.	50%
09/22	Complete the stack design and components development	Not started
12/22	Complete the fabrication and evaluation of up to 3 short stacks (< 0.25 kW).	Not started
03/23	Complete 1 kW stack testing with \geq 55% fuel cell at 0.5 A cm ⁻² , and $>$ 90% electrolysis at \leq 650 °C, <2% per 1000 h degradation.	Not started
05/2023	Complete the system design and integration, complete a thermodynamic analysis.	Not started
07/2023	Complete evaluation of the 250 W system with \geq 50% fuel cell efficiency at 0.5 A cm ⁻² , and >85% electrical efficiency at \leq 650 °C.	Not started
09/2023	Demonstrate the potential to produce hydrogen at a cost of \$2 per kilogram based on a cost of electricity of \$30 per MWhr.	Not started
09/2023	Evaluate 1.0 kW rSOC system performance at the relevant operating conditions and model: efficiency, durability, degradation, life of electrolysis cell.	Not started
		20

Acknowledgment

This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] under Award Number DE-FE0031975.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reference List for Slide 16

- 1. S. Choi, T.C. Davenport, S.M. Haile, Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency, *Energy Environ. Sci.*, 12 (**2019**) 206-215.
- 2. J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T.-H. Lim, G. Kim, Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production, *Nano Energy*, 44 (**2018**) 121-126.
- H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian, B. Hu, P. Singh, C.J. Orme, L. Wang, Y. Zhang, D. Ding, Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production, *Nat. Commun.*, 11 (2020) 1907.
- C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O'Hayre, Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production, *Nat. Energy*, 4 (2019) 230-240.
- 5. W. Li, B. Guan, L. Ma, S. Hu, N. Zhang, X. Liu, High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell, *J. Mater. Chem. A*, 6 (**2018**) 18057-18066.
- E. Vøllestad, R. Strandbakke, M. Tarach, D. Catalán-Martínez, M.-L. Fontaine, D. Beeaff, D.R. Clark, J.M. Serra, T. Norby, Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers, *Nat. Mater.*, 18 (2019) 752.
- D. Huan, N. Shi, L. Zhang, W. Tan, Y. Xie, W. Wang, C. Xia, R. Peng, Y. Lu, New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells, ACS Appl. Mater. Interfaces, 10 (2018) 1761-1770.

