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Company Overview

• Diversified manufacturing and logistics 

company

• Portfolio includes Midstream, Chemicals, 

Refining, and Marketing & Specialties 

businesses

• Process, transport, store, and market fuels 

and products globally

• #23 on the Fortune 500 list 

†
Net income attributable to Phillips 66.

SOFC Program

• Launched in 2010

• Proprietary high-performing materials

• Cost-effective fabrication methods

• Unique stack designs

• Fully automated control systems

• Full spectrum of  cell/stack manufacturing 

and testing facilities



Fabrication and Testing Facilities
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High Power LaserTape Caster Spray Coater

System Testing EnclosureStack TesterHigh Temp Furnace

• >10,000 sq. ft. floor space

• 20+ fuel cell and stack test 

stations

• Fuel (H2, CH4, pipeline NG) 

processing and treatment

• Steam generation and control

• Large load banks and power 

supplies

• System instrumentation, 

control and communication



Project Objectives
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• To design, fabricate, and demonstrate a robust, highly efficient,

and affordable reversible solid oxide cell (rSOC) system based

on a proton conducting electrolyte membrane for hydrogen and

power generation.

• The 1-kW prototype system will meet the following technical

specifications:

• Operate the system in a real-world environment.

• ≥50% electrical efficiency (LHV of H2) at 0.5 A cm-2 in fuel

cell mode on H2 at 650 °C.

• >85% electrical efficiency (LHV of H2) in electrolysis mode

at ≤ 650 °C.

• Demonstrate the potential to < $2/kg hydrogen.



Technical Approach
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Major Tasks Action Plan

Materials Development

• Modify composition of state-of-the-art BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte

• Develop air electrodes with high ORR/OER activities and excellent tolerance to 

H2O and Cr-poisoning

• Scale up powder synthesis to >1 kg /day

Cell Fabrication • Fabricate button cells showing higher performance and good durability

• Fabricate 10 cm  10 cm cells by low cost and scalable methods

• CFD assisted stack design

Stack Assembly • QC for stack components and assembly

• Demonstrate high stack performance in both SOFC and SOEC modes

System Demonstration

• Design a 1.0 kW autonomous system with cloud-based control and data 

communication

• Evaluate system performance and achieve efficiency, lifetime and cost targets

• Techno-economic analysis to demonstrate $2/kg H2



Project Progress
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Timeline Milestone % Complete

12/31/2020 Electrolyte conductivity >0.01 S cm-1 and ionic transference

numbers >0.95 at 600 ºC.
100%

12/31/2020 Electrolyte degradation rate <2%/1000 h at 600 ºC. 100%

03/31/2021 Air electrode with catalysts polarization resistance <0.2 Ω cm2 at

600 ºC.
100%

06/30/2021 Air electrode with catalysts degradation <2%/1000 h at 600 ºC 

under H2O and Cr. 

100%

07/30/2021 Scale up ceramic powder synthesis to > 1.0 kg per day 100%

09/30/2021 Button cells 1 W cm-2 at 0.7 V and 600 ºC in fuel cell mode, 1.5 A 

cm-2 at 1.3 V and 600 ºC in electrolysis mode, and a Faradaic 

efficiency of 95%. 

100%

03/31/2022 Button cells degradation <2%/1000 h at ≤ 650 ºC 50%



Electrolyte Development

9
RESTRICTED CONFIDENTAL

BaMO3 + CO2 → BaCO3 + MO2

BaMO3 + H2O  → Ba(OH)2 + MO2

R. Murphy et al., Adv. Funct. Mater. 2020, 30, 2002265

(Y2O3)0.08(ZrO2)0.92

Gd0.1Ce0.9O2

BaZr0.1Ce0.7Y0.1Yb0.1O3

Limitations



Electrolyte Development, BHCYYb
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• Hf based electrolytes show conductivity >0.01 S cm-1 at 600 oC (3%H2O-Ar)

• Ionic transference number >0.95 at 600 oC

BaHf0.3Ce0.5Y0.1Yb0.1O3

BaZr0.1Ce0.7Y0.1Yb0.1O3

H2 with 3% H2O//ambient air



Electrolyte Development, BHCYYb
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No observable degradation in water in short-term testing



High-Performance Catalyst Coated Air Electrode
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Catalyst coated PrBa0.8Ca0.2Co2O5+δ (PBCC) air electrodes show <0.05 Ωcm2 Rp at 

600°C in air w/ 3% H2O.

Bare PBCC Catalyst-coated PBCC



Stable Catalyst Coated Air Electrode
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Catalysts coated PrBa0.8Ca0.2Co2O5+δ (PBCC) air electrodes show a low degradation rate 

of <1% pre 1000 h in H2O and Cr environment

Crofer (Cr source) 

Silver mesh 

Symmetrical cell   



Cell Configuration and Testing Setup
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Performance of Single Cells in Fuel Cell Mode
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Single cells demonstrated peak power density of 1.2 W cm-2 at 600 °C.

Fuel electrode

BaHfO3-based electrolyte

Air electrode

10 µm



Cell Performance in Electrolysis Mode
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• Single cells demonstrated 2 A cm-2 at 600 °C in the H2O electrolysis mode 



Stability Testing
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Single cells demonstrated a low degradation rate of 1%/1,000 h.



Powder Synthesis Scale-up
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• Continuous or batch synthesis process

• Narrow particle size distribution, d50 <0.5 m.

• Homogeneous composition

• Easy to scale-up

• Up to 1000 g/day powder production rate.Spray Pyrolysis

Ball Mill

Cathode Powder

Commercial

SSC

P66

Spray pyrolysis

SSC

Sol-gel

PB9CN

P66

Spray pyrolysis

PB9CN

0.8 V, H2, 650°C,

SSC: Sm0.5Sr0.5CoO3 PB9CN: PrBa0.9Co1.96Nb0.04O5



Summary
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• Developed proton conducting electrolyte BaHf0.3Ce0.5Y0.1Yb0.1O3

• Conductivity >0.01 S cm-1

• Good stability in H2O and CO2 in short term testing

• Developed catalyst coated PrBa0.8Ca0.2Co2O5+δ (PBCC) air electrode

• Polarization resistance Rp <0.1 Ω cm2, 600 ºC

• No obvious degradation in 3% H2O at 600 ºC for over 500 h

• Fabricated reversible button cells  

• Peak power density of 1.2 W cm-2 at 600 °C in fuel cell mode

• Current density of 2 A cm-2 at 1.3 V, 600 °C in electrolysis mode

• 1,000 h operation at 500 °C with a degradation rate of ~1% per 1,000 h

• Established ceramic powder synthesis capability up to 1000 g / day

Fabricated flat 4″ cell with the new proton conducting electrolyte



Proposed Future Work
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Date Milestone % Complete

03/22 Complete durability evaluation of the button cell for at least 1000 h with a 

degradation rate of <2% per 1000 h at ≤ 650 ºC

70%

06/22

Go/No-Go 

Decision Point

Complete the fabrication of 10x10 cm2 cells (with an effective area of 81 cm2) with 

≥70% roundtrip efficiency at 0.5 A cm-2 in both SOFC and SOEC modes at ≤ 650 

ºC. Complete durability evaluation of the 10x10 cm2 cell for at least 1000 h with a 

degradation rate of <2% per 500 h at ≤ 650 ºC.

50%

09/22 Complete the stack design and components development Not started

12/22 Complete the fabrication and evaluation of up to 3 short stacks (< 0.25 kW). Not started

03/23 Complete 1 kW stack testing with ≥55% fuel cell at 0.5 A cm-2, and >90% 

electrolysis at ≤ 650 °C, <2% per 1000 h degradation.

Not started

05/2023 Complete the system design and integration, complete a thermodynamic analysis. Not started

07/2023 Complete evaluation of the 250 W system with ≥50% fuel cell efficiency at 0.5 A 

cm-2, and >85% electrical efficiency at ≤ 650 °C.

Not started

09/2023 Demonstrate the potential to produce hydrogen at a cost of $2 per kilogram based 

on a cost of electricity of $30 per MWhr.

Not started

09/2023 Evaluate 1.0 kW rSOC system performance at the relevant operating conditions 

and model: efficiency, durability, degradation, life of electrolysis cell.

Not started
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Administration] under Award Number DE-FE0031975.
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