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Motivation
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H, is at the center for enhancing
efficiency while reducing
emission of many clean energy
technologies.

Solid oxide electrolysis cells
(SOEC) has potential to offer
highly efficient production of
green H..

Development of new materials
and fabrication processes is vital
to achieving high performance
and durability at low cost.



Background
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Technical Approach

v" Developing new composition and

structure of proton conducting Conductivity &

Electrochemical

electrolytes; measurements
Vibrational

In situ
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and architecture of air electrodes;
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v Optimizing compositions, thickness,
morphology, and fabrication processes
of catalysts;

v Understanding the degradation
mechanisms using various in situ, ex

Unraveling the mechanisms
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Model Cells for Mechanistic Study
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Surface Modification Through Infiltration
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« Significantly enhanced electro-catalytic activity and durability of electrodes

Energy Environ. Sci., 2014, 7, 552



Surface Modification

hrough Surface Sol Gel

Ba(OC3H7)2 + Hzo - HOBa(OC3H7) + C3H7OH

Layer by layer growth via two alternating

self-limiting reactions:

1. Chemisorption of metal alkoxide on
surface

2. Hydrolysis via water to form oxide

3. Repeat for n cycles

« Achieves conformal coating
« Precise thickness control
 Low cost compared to ALD
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In Situ/Operando Raman & EIS

Changes in surface chemistry, structure, and morphology, with or without

exposure to contaminants, will be directly correlated with the electrochemical
properties as probed using EIS.
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In Situ/Operando Study at H
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Synchrotron-Enabled XRD, XAS, & XPS
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Provides unique ability to study bulk and surface structures simultaneously via fluorescent X-ray
absorption spectroscopy (XAS), Auger electron yield, and X-ray diffraction (XRD)

Probe near-surface of electrode and identify surface composition, structure and chemical
environment of specified element under in situ conditions: temperature, atmosphere, and bias

Examine interface reactions between electrode and electrolyte under in situ conditions: temperature,
atmosphere and bias

Materials today (2011) 14, 534. 13



Modeling and Simulation

Modeling, simulation as well as prediction tools will be used to help in formulating an effective
strategy to mitigate the stability issues and predict new catalyst materials that can enhance the

stability of electrode.
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Understanding the Mechanisms of Electrode Reactions

Fuel Cell mode 0, Electrolysis mode
O, + 4H* + 4e-— 2H,0 @ H,O 2H,0 — 0, + 4H* + de-

* Cell performance is limited by the sluggish ORR/OER in the air electrode
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Oxygen Reduction Reactions (ORR)
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Oxygen Evolution Reactions (OER)
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 The high OER activity is attributed to the rapid water dissociation on BCO nanoparticles and
fast oxygen desorption on PBCC.
ACS Energy Lett., 6 (2021) 1511-1520.
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Project Goal

To establish the scientific knowledge for rational design, fabrication, and
demonstration of a robust, highly efficient, and low-cost Solid Oxide

Electrolysis Cell (SOEC) based on a proton conducting electrolyte for H,
production.

B To optimize proton conductivity while enhancing Faradaic efficiency and durability
of proton conducting membranes under electrolysis conditions;

B To optimize the air-electrode materials for fast ionic and electronic transport, high
electro-catalytic activity, and durabillity;

B To optimize the air-electrode catalysts for enhanced bi-functional electro-catalytic
activity and durability against various contaminations;

B To gain understanding of the degradation mechanisms of cell materials and
Interfaces.
18



Project Schedule

Task 1: Project Management and Planning
Task 2: Design and Optimization of Proton-conducting Electrolytes
Task 3: Development and Optimization of Air Electrodes
Task 4: Development and Investigation of Catalysts for Air Electrode
Task 5: Investigation of Degradation Mechanism

Task Milestones FY2021 FY2022 FY2023
01 02 | Q3 | Q4 | Q5 | 06 | Q7 Q8
1.1 —
1.2 ——
2.1 -_—
2.2 ——
2. —
3.2
L1 —
4.2
5.2
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Milestones

Date | Desorpton B Complete

12/21  Complete electrolyte development with conductivity >0.01 S cm in Ar (3%H,0) and ionic 15%
transference numbers >0.95 at 600 °C.

03/22  Complete bi-layer electrolyte development with the durability of at least 500 h with a degradation 10%
rate of <0.5% per 1,000 h.

06/22  Complete air electrode development with a R, of <0.3 Q cm? at 600 °C in Air (3%H,0). 10%

09/22  Complete air electrode optimization with a R, of <0.2 Q cm? at 600 °C in Air (3%H,0). Not started

12/22 Complete the catalyst modification of the air electrode with a R, of <0.15 Q cm? at 600 °C in Air Not started

(3%H,0), and the durability evaluation for at least 500 h with a degradation rate of <0.5% per
1,000 h under the presence of contaminations (e.g., H,O and Cir).

03/23  Complete in situ and ex situ characterization of surface morphology and surface species using Not started
experimental and modeling work to determine the activity and stability of the cells as a function of
contaminant presence, relevant operating conditions, and catalyst content.

06/23  Complete the fabrication of button cells with a current density of >1.8 A cm=2 at 1.3 V in electrolysis ~ Not started
mode at 600 °C and =75% roundtrip efficiency in both SOFC and SOEC modes at < 650 °C.

09/23 Complete the long-term durability evaluation of button cells for at least 500 h with a degradation  Not started
rate of <0.5% per 1,000 h.
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Preliminary Results: New Air Electrode Materials
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 Developed a new triple-conducting BPHYC air electrode;
[ Achieved electrode polarization resistance of < 0.2 Q) cm? at 600 °C;
1 Demonstrated high activity and stability under operating conditions.
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Future Work

Date Brief Description Complete
12/21 | Complete electrolyte development with conductivity >0.01 Scm?®| 15%
In Ar (3%H,0) and ionic transference numbers >0.95 at 600 °C.
03/22 | Complete bi-layer electrolyte development with the durability of 10%
at least 500 h with a degradation rate of <0.5% per 1,000 h.
06/22| Complete air electrode development with a R, of <0.3 Q cm? at 10%
600 °C in Air (3%H,0).
Demonstrate a current density of >1.8 Acm-2 at 1.3 V In
End of Project electrolysis mode at 600 °C and =75% roundtrip efficiency in Fy23

Goal:

both SOFC and SOEC modes at < 650 °C. Complete >500-h
operation with a degradation rate of <0.5% per 1,000 h.
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