Durable and High-Performance SOECs Based on Proton Conductors for Hydrogen Production

DOE Project Managers:Evelyn Lopez, Seth LawsonDOE project award # FE0032115

PI: Meilin Liu

Team: Yucun Zhou, Gyutae Nam, Nicholas Kane, Xueyu Hu, and Humphrey Lin

Georgia Institute of Technology

November 18, 2021

22nd Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting

Outline

- Motivation and Background
- Technical Approach
- Project Goal
- Project Schedule and Milestones
- Preliminary Results
- Acknowledgement

Motivation

- H₂ is at the center for enhancing efficiency while reducing emission of many clean energy technologies.
- Solid oxide electrolysis cells (SOEC) has potential to offer highly efficient production of green H₂.
- Development of *new materials* and *fabrication processes* is vital to achieving high performance and durability at low cost.

Electrochem. Soc. Interface 2018, 27, 47

Background

High conductivity
 Low-temperature operation
 Dry H₂ (avoid Ni oxidation, H2 separation)
 Reduced cost
 Enhanced durability

Technical Approach

- Developing new composition and structure of proton conducting electrolytes;
- ✓ Tailoring the compositions, structure, and architecture of air electrodes;
- Optimizing compositions, thickness, morphology, and fabrication processes of catalysts;
- Understanding the degradation mechanisms using various *in situ*, *ex situ*, and *operando* measurements guided by theoretical analysis.

Single Cell Fabrication and Testing

Model Cells for Mechanistic Study

Model Cell

PLD

MBE

ALD

Surface Modification Through Infiltration

Significantly enhanced electro-catalytic activity and durability of electrodes

Surface Modification Through Surface Sol Gel

 $Ba(OC_{3}H_{7})_{2} + H_{2}O \rightarrow HOBa(OC_{3}H_{7}) + C_{3}H_{7}OH$

Layer by layer growth via two alternating self-limiting reactions:

- 1. Chemisorption of metal alkoxide on surface
- 2. Hydrolysis via water to form oxide
- 3. Repeat for n cycles
- Achieves conformal coating
- Precise thickness control
- Low cost compared to ALD

LSCF: $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ SDC: $Sm_{0.2}Ce_{0.8}O_2$

Repeat for n cycles

Surface Sol Gel (SSG) Process to Deposit BaO

In Situ/Operando Raman & EIS

Changes in surface chemistry, structure, and morphology, with or without exposure to contaminants, will be directly correlated with the electrochemical properties as probed using EIS.

In Situ/Operando Study at High Temperatures

EIS

1. Electrode

2. Interface

3. Catalyst

Correlation between Raman and EIS

Synchrotron-Enabled XRD, XAS, & XPS

- Provides unique ability to study bulk and surface structures simultaneously via fluorescent X-ray absorption spectroscopy (XAS), Auger electron yield, and X-ray diffraction (XRD)
- Probe near-surface of electrode and identify surface composition, structure and chemical environment of specified element under in situ conditions: temperature, atmosphere, and bias
- Examine interface reactions between electrode and electrolyte under in situ conditions: temperature, atmosphere and bias

Modeling and Simulation

Modeling, simulation as well as prediction tools will be used to help in formulating an effective strategy to mitigate the stability issues and predict new catalyst materials that can enhance the stability of electrode.

Understanding the Mechanisms of Electrode Reactions

• Cell performance is limited by the sluggish ORR/OER in the air electrode

Oxygen Reduction Reactions (ORR)

Water-promoted dissociation
 and diffusion processes

Energy Environ. Sci., 2021, 14, 1506.

Reaction Coordinate

Oxygen Evolution Reactions (OER)

• The high OER activity is attributed to the rapid water dissociation on BCO nanoparticles and fast oxygen desorption on PBCC.

ACS Energy Lett., 6 (2021) 1511-1520.

Project Goal

To establish the scientific knowledge for rational design, fabrication, and demonstration of a robust, highly efficient, and low-cost Solid Oxide Electrolysis Cell (SOEC) based on a proton conducting electrolyte for H_2 production.

- To optimize proton conductivity while enhancing Faradaic efficiency and durability of proton conducting membranes under electrolysis conditions;
- To optimize the air-electrode materials for fast ionic and electronic transport, high electro-catalytic activity, and durability;
- To optimize the air-electrode catalysts for enhanced bi-functional electro-catalytic activity and durability against various contaminations;
- To gain understanding of the degradation mechanisms of cell materials and interfaces.

Project Schedule

Task 1: Project Management and Planning
Task 2: Design and Optimization of Proton-conducting Electrolytes
Task 3: Development and Optimization of Air Electrodes
Task 4: Development and Investigation of Catalysts for Air Electrode
Task 5: Investigation of Degradation Mechanism

Tack	Milestones	FY2021	FY2022					FY2023	
IdSK		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1	1.1								
	1.2								
2	2.1								
	2.2								
3	3.1								
	3.2								
4	4.1								
	4.2			1					
5	5.1								
	5.2				'				

Milestones

Date	Description	% Complete
12/21	Complete electrolyte development with conductivity >0.01 S cm ⁻¹ in Ar (3%H ₂ O) and ionic transference numbers >0.95 at 600 °C.	15%
03/22	Complete bi-layer electrolyte development with the durability of at least 500 h with a degradation rate of <0.5% per 1,000 h.	10%
06/22	Complete air electrode development with a R_p of <0.3 Ω cm ² at 600 °C in Air (3%H ₂ O).	10%
09/22	Complete air electrode optimization with a R_p of <0.2 Ω cm ² at 600 °C in Air (3%H ₂ O).	Not started
12/22	Complete the catalyst modification of the air electrode with a R_p of <0.15 Ω cm ² at 600 °C in Air (3%H ₂ O), and the durability evaluation for at least 500 h with a degradation rate of <0.5% per 1,000 h under the presence of contaminations (e.g., H ₂ O and Cr).	Not started
03/23	Complete <i>in situ</i> and <i>ex situ</i> characterization of surface morphology and surface species using experimental and modeling work to determine the activity and stability of the cells as a function of contaminant presence, relevant operating conditions, and catalyst content.	Not started
06/23	Complete the fabrication of button cells with a current density of >1.8 A cm ⁻² at 1.3 V in electrolysis mode at 600 °C and \geq 75% roundtrip efficiency in both SOFC and SOEC modes at \leq 650 °C.	Not started
09/23	Complete the long-term durability evaluation of button cells for at least 500 h with a degradation rate of <0.5% per 1,000 h.	Not started

Preliminary Results: New Air Electrode Materials

- Developed a new triple-conducting BPHYC air electrode;
- \Box Achieved electrode polarization resistance of < 0.2 Ω cm² at 600 °C;
- Demonstrated high activity and stability under operating conditions.

Preliminary Fuel Cell Performance

Ni-BHCYb/BHCYb/BPHYC cell demonstrated high performance
 Cell operation temperature is reduced to 400 °C

Preliminary Electrolysis Cell Performance

Demonstrated high performance: 2.3 A cm⁻² at 1.3 V and 600 °C
 Showed good stability for water electrolysis

Future Work

Date	Brief Description	Complete
12/21	Complete electrolyte development with conductivity >0.01 S cm ⁻¹ in Ar (3%H ₂ O) and ionic transference numbers >0.95 at 600 °C.	15%
03/22	Complete bi-layer electrolyte development with the durability of at least 500 h with a degradation rate of <0.5% per 1,000 h.	10%
06/22	Complete air electrode development with a R_p of <0.3 Ω cm ² at 600 °C in Air (3%H ₂ O).	10%

End of Project
Goal:Demonstrate a current density of >1.8 A cm-2 at 1.3 V in
electrolysis mode at 600 °C and \geq 75% roundtrip efficiency in
both SOFC and SOEC modes at \leq 650 °C. Complete >500-h
operation with a degradation rate of <0.5% per 1,000 h.</th>

FY23

Acknowledgement

Discussions with Evelyn Lopez, Seth Lawson, and other DOE management team members

U.S. Department of Energy Award No. FE0032115

Thank you for your support