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Cell and Stack Degradation

Modeling and Simulation
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Integrated Cell Degradation Model N=|ManoNaL
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Coupling Advanced Technigques = [PiERyA
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Microsiructure Evolution in Ni-YSZ Electrodes under Operating Conditions

« Coupling the phase field model, microstructure - Microstructure properties:
analysis toolset, and multiphysics model for e PO Volume fraction, fortuosity,
modeling the microstructure evolution . oarticle size, specific

« Nibulk diffusion surface area, TPB density
Ni(OH), ' During Operation Ni

formation and
diffusion through
the pore phase
and Ni-YSZ
wettability
change are
incorporated in
the model as the
driving forces of
the
microstructure
evolution
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Adapting Capability tfo R-SOC/SOEC Mode

Multiphysics, ECR Characterization, Performance, Infiltration Modeling
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Incorporation of Additional Degradation Mode [N=|tanona
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Simulation of Mechanical Degradation Considering Microstructures

Expanded modeling capability of Thermal Cycling Crack Length vs # of Cycles
simulating crack growth O
considering SOC microstructures T |
= 8 Thermal cycling A
Microstructure S o
= Redox cycling
YSZ = 4f
=
E 2r
Pore S

Redox Cycling 0 5 10 15
Ni No. of Cycles
I

Crack

Interphase cracking and through
cracking under thermal and redox
cycling, respectively

Intfact
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Machine Learning and Microsfructure N=|Momona
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Microstructure Generation

Convolutional Neural Networks

Super-resolution

Full-rgs data Porosity  0.21

s e LSM/YSZ 0.8
3D analysis  Davgl 445
Davg2 610
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+ tortuosity, SA, etc I .

POFOS”'y 0.26 Batch of synthetic images
LSM/YSZ 0.86

Machine Davgl 480
Learning Davg2 660 Tim Hsu et al., "Microstructure generation via

Davg3 503 generative adversarial network for

TPB 4.1 heterogeneous, fopologically complex 3d
+ tortuosity, SA, materials." JOM v73 pg 90 (2021)
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Lifetime Energy as Figure of Merit = [Ekay
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Voltage decay is important but
misses whether elecirode was a
poor performer to begin with

Need a single figure-of-merit that captures both
initial performance and stability

Area = lifetime energy o et ot :
rerime energy proaucrtion — dr a given curren
produced [Wh/cm?] density, up o a given time

Power [W/cm?]

Proxy for $/kWh, which is what a plant operator
would care about
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Cathode Feature Importance Ranking

Impact on voltage decay [%/khr]
Lower is better |
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Small LSM particle sizes are bad for voltage decay,
but net good for lifetime performance

Lower LSM/YSZ ratio is good for both metrics
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Epting, et al., ECS Transactions 103(1 ):-




Machine Learning Results of Analysis N=|NaronaL

TL TECHNOLOGY
LABORATORY

Each cathode feature's impact on lifetfime energy produced at 400 mA/cm?
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Low LSM/YSZ ratio, low porosity, and small solid particles are beneficial
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Additional Progress

Large Cell Simulations

Tempersture: 102302 102308 102314 10232 102326 102332 102333
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DREAM SOFC Full 3D Planar
Hydrogen/Hydrocarbon Fuels
Contaminant Poisoning
Impedance Analysis
Electrolysis/r-SOC Operation

Sezer, et al., ECS Transactions 103(1):751 2021.
Sezer, et al., ECS Transactions 103(1):959 2021.
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Defect Chemistry
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* Provides electronic and
energetic insights

« Parameters infegrated with
phase field/reaction models

Lee, et al., Phys. Rev. Applied 8(4):044001 2017.
Lee, et al., Phys. Rev. Research 3:013121 2021.
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EC Reaction Analysis

TPB Boundary
Activity Map

« Developed ERMINE module in
MOOQOSE

« Direct simulation of SOC
physics in 3D microstructures

- Deeperlook at heterogeneity,
reaction distribution

Hsu, et al., MethodsX, 7:100822 2020.
Hsu, et al., Electrochim. Acta 345:136191 2020.
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Performance Enhancement &
Degradation Mitigation

SOC Electrode Design and Engineering
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Objectives

« Enhancement of performance and
longevity

« Materials engineering

* Microstructure engineering

Benefits
» Cell/stack cost reduction
« Cell overpotential reduction

« Thermo-chemical / thermo-mechanical
stability increase

« Reduced cost-of-electricity and/or cost
of hydrogen produced

#2%.  U.S. DEPARTMENT OF

Approach

Depleyimeni

RleveleopmEni

DESIGN of materials and nanostructures

DEVELOPMENT through tailored electrode
construction

DEPLOYMENT in commercial SOC systems




Hybrid Materials-Assisted Templating ¥E L

Traditional Sintering In-Situ Carbon Templating Method
1) Ceramic + Pore Former 2) Sinter in Air 1) Hybrid Materials 2) Sinter in Argon 3) Calcine in Air Traditional Sintering In-Situ Carbon Templating
Suspend Form carbon Remove carbon by e R R
metals in template low temperature
organic matrix in-situ oxidation
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[ | Pc?re Former . . Metal.lons _ © Mixed-Metal-Oxide Ceramic sin’rering templaﬁng
© Mixed-Metal-Oxide Ceramic Qrganic Matrix B Carbon Template

« Hybrid Materials: Metal and organic components mixed at atomic level

« Sintering in inert atmosphere: carbon template forms in-sifu and remains
during sintering; carbon is subsequently burned out at 700°C.
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Infiltration of Nano-Structured Catalysts N=|NTONAL
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« In-situ carbon templating method expanded to larger set of SOC materials
« Reductions in R, and R, possible by adding nano-size ionic conductors to backbone.
» Protonic conducting oxide (BaCe,,Lry,Y,,05) also formulated for IT-SOC applications

1.2 700 2.00
~ @ Comm LSCF-SDC (Powders)
| \ - 600 E 1.75 1 i
! AN O R 4@7 800°C O LSCF-SDC-nSDC (5 wt% C)
< = ‘e 150 1
Z’ 0.8 /’\\ o % LE)
o) -~ g 1259 750°C
o, S o A~ B s
6 . ? =Nano-LSCF treated cell | 300 C E ’ 1
> N /&\\\—Baseline 8 g 0.75 A 200G
\\\ \\\ - 200 q;) NT 0.50 ' !
0.2 O .\
B 0.25 -
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0 0 000 —/——m———— J‘ .......
0 500 1000 1500 2000 2500 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
Current density (mA/cm?) Zreal (Q-cm?)
Previous results: Power curves of New Results: Decrease in polarization resistance of LSCF/SDC
infiltrated LSM/YSZ baseline cells baseline cells when infiltrated with nano-SDC (nSDC)
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Additive Manufacturing of SOC N=|AToNAL
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« Built automated layer-by-layer dip-coating and aerosol spray deposition systems to
create 3D functionally graded electrode structures

« Can vary composition, particle size, and porosity of composite electrode components

« Aerosol system has six inlet tubes (2 cleaning solutions, 4 electrode compositions)
« Can change nozzle to change the width of deposited stripe

« Systems will be used to create optimized electrodes designed through simulations

Porous YSZ YSZ backbone porosity #1: 100% LSCF

1.5{im varied in z-direction on YSZ
Ly substrate

3 um #2: 75/25 LSCF/YSZ

PMMA

Electrode composition varied
from inlet to outlet on 5x5 cm? #3: 50/50 YSZ/LSCF

5 pm

PMMA substrate (YSZ used for cost
considerations during system #4: 25/75 LSCF/YSZ
YSZ development phase)
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Atom Probe Studies of Degradation N=|NanonaL
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Strategic Systems Analysis
and Engineering

Pulling It All Together
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Systems Analysis Recent Progress NATIONAL
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(]
Ratlonqle — SystemOverview h Cost Basis
Stacks per year 20000 2019

Capacity per year 107.95[MWiyear
Power Density 0.34|W/ecm2

* Arobust cell and stack production cost tool was
developed previously

* Inresponse to the SOFC Program’s investment in Fae S

Stack Cost Component Percentages
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« Tool will allow sensitivity studies to be conducted
on SOFC and SOEC —
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Systems Analysis Recent Progress

Rationale

« Inresponse to DOE interest, the SOFC Program has
expanded its portfolio to include high-temperature
solid-state electrolysis technology

« A detailed understanding of the merits/demerits of

coupling SOFC/SOEC technology versus a single
reversible SOC unit is needed as a basis for future
analysis

Approach

« The analysis will consider the incorporation of reversible
SOC and SOFC/SOEC paired equipment and details on
the effects of integrated equipment in a hybridized
energy system

+ E.g. capital cost of reversible SOC vs stability of
separate SOFC/SOEC units will be a critical
consideration

Outcome

« The analysis will provide critical information to serve as @
foundation to inform the SOFC Program on targeted
R&D needed for integrated energy systems with SOC
technology(ies)

« Targeted guidance for future analysis scope
« Scheduled completion March 2022

Pump
Standard Operation

Low Demand

High Demand

- Solar PV, Wind, etc.

Intermittent
Renewables

N NATIONAL
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APPENDIX E — AREA OF INTEREST 5 :
SoLip Oxipe ELEcTROLYSIS CELL
(SOEC) TecHNOLOGY
DEVELOPMENT FOR HYDROGEN

PRODUCTION

AOl Issue Date 01/15/2021

Submission Deadline for Full Applications
03/01/2021

DOE Share ($K) — 80% 1,000

Cost Share ($k) — 20% 250

Anficipated No. of Awards 8

Maximum Period of Performance 24
months (Single Phase/Single Budget
Period)

Electricity Demand

Cathode

Natural Gas Supply
Saolid Oxide

|
I
—_—)

Anode

Air Sweep @
Y

Steam

Enriched Air
>

@ Air
Depleted Fuel Cell

Air M | Storage / CLR / Products ‘

H:

Cathode

Solid Oxide
Reversible Fuel Cell

Hydrogen
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Wrap-Up
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NETL Capability Overview N=|NATONAL
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FECM-SOFC Program NETL Unique Capability and Achievements

Goals and Objectives

« Only team capable of modeling from atoms-to-COE o- B Mlcr;stwdure
« Published high-resolution cell reconstruction datasets Reconstruction
Eggﬁgg‘l’c/ - World leader in characterizing and simulating heterogeneity

Market Analysis « Advanced interface characterization - Atom Probe Tomography

« First using machine learning to create 40,000+ synthetic microstructures

« Able to provide targeted cell development feedback to industry

« In-situ high temp optical fiber sensor development (temp / gas comp)

D‘:Ag;ggl‘i’;‘s‘”" Erf';‘r"'e’:fi'ﬁg »  Experimental testing/electrode engineering/infiltration successes TPB Boundary Activity
« Extensive capability in strategic systems analysis and engineering Map

n=0.2(V)

[ o |
e B

cathode

' Multi-Cell Stack |
Single Cell el o SOC System

APT Composition Map
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ArS Energy Solutions, LLC UNDEERC H,NEW Laboratory
PSS Consortium (EERE/HFTO)

H:NEW

U.S. DEPARTMENT OF ENERGY

Short Inlet Tube Long Inlet Tu b

0 Molorfroc’non of H2 o’r
21% O, 50% H, 0.5 V

. « Applying NETL capability . TR
Sx;g’re&ggeg%’&?erﬂg??ﬁe to syngas fueled, tubular an’rrlbu’rlng expert :
F\)IETL site very soon! SOC guggﬂce O? m(.)dels'?)gc

: and characterizing

. Please see presentation » Please see presentafion
latertod oyP from November 14 performance for new

. Project: DE-FE31978 . Project: DE-FE31977 HFTO program

T
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Final Ahnnouncement N=|NAToNAL
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» This will be Greg'’s final presentation as NETL Team Lead
for SSEC R&D at these meetings

« NETL is In the process of transitioning the Team Lead role
to Dr. Harry Abernathy

» Greg will continue to be involved in NETL Systems
Analysis efforts and will confinue to participate in these
meetings in that role

T




THANK YoOuUl!

VISIT US AT: www.NETL.DOE.gov

Gregory A. Hackett, Ph.D.

Systems Engineer, Solid Oxide Cells and
Carbon Utilization Technologies
National Energy Technology Laboratory
U. S. Department of Energy
304-285-5279 .
Gregory.Hackett@netl.doe.gov St .5, DEPARTMENT OF
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