Progress in SOFC Technology Development at FuelCell Energy

Hossein Ghezel-Ayagh

2021 SOFC Project Review Meeting November 16, 2021

Solid Oxide Fuel Cell Technology Overview

Anode-Supported Solid Oxide Fuel Cell

 Cell scale up to 1000 cm² active area

fuelcellenergy

Interconnect	-	Sol	id Oxide Fuel (Cell Structure	
Cathode Flow Field/Contact Cathode Barrier Layer Electrolyte Anode Functional Layer Anode substrate Anode Flow Field/Contact Interconnect		Elect	Cathode (10-50 μm) - screen printing Electrolyte (5-10 μm)- screen printing Anode support (up to 1mm) - tape casting Mag = 750 λ		
Component	Materials	Thickness	Porosity	Process	
Anode	Ni/YSZ	~0.3 mm	~ 40%	Tape casting	
Electrolyte	YSZ	5 - 10 μm	< 5%	Screen printing	
Cathode	Conducting ceramic	10 - 50 μm	~ 30%	Screen printing	

2

Solid Oxide Manufacturing Highlights

Manufacturing processes scalable to high volume

Automated QC / Stacking

Long-term Performance

Verified long-term cell endurance after >1.5 years of operation with 3% cathode air humidity resulting in 0.26%/1000h performance degradation

Recent Thin Cell Performance

 Performance of cell at high fuel utilization is strongly dependent on anode thickness and structure

Recent 300 µ anode development has further improved cell performance (2.34 W/cm² at 4.7 A/cm2)

200kW SOFC Power System Overview

- Includes (2) 100kW SOFC stack modules designed to operate independently
- Factory assembled & shipped to site

fuelcellenergy

200 kW System Process Flow Diagram

100kW Module Design & Fabrication

100 kW modules include 4 towers each consisting of 2 legacy stacks (8 stacks per module)

fuelcellenergy

OCV

200 kW System Operation Highlights

• Field Tests at Clearway Energy Center, Pittsburgh, PA

• Factory Tests at Danbury, CT

Highlight of Factory Tests + Clearway Site 4/9/2019 – 10/14/2020			
Total Hours Net AC Generated	5895 hours		
Total Net Energy Output from System	299,458 kW-h		
Gross DC Efficiency Achieved	56% (LHV NG)		

Compact Solid Oxide Architecture (CSA) Stack

- Thinned components (cell + interconnect) to minimize stack material content (~0.5 kW/kg)
- Simplified unit cell with fewer components
- Designed for automated assembly
- Thermal and flow design to control temperature variations in module

Number of Cells	350	
Active Area	81 cm ²	
Power @ 0.25 W/cm ²	7 kW	
Seal Technology	Crystallized glass	

CSA offers low material content stack for commercialization

CSA Stack Overview

Integrated compression

Oxidant outlet manifold

350 cells - 17" tall 10 kW (pressurized)

Flexible structure offers compliance and robustness

CSA Platform

Droportu	CSA Stack Scale			Commonto	
Property	Short	Mid	Full	Comments	
Cell count	45	150	350		
Fuel cell voltage, V	38	128	298	At 0.85 V/cell	
Stack power, kW	0.9	3.0	7.0	At 0.29 A/cm ²	
Stack power, kW	1.2	4.1	9.6	At 0.40 A/cm ² Pressurized 4 bar	
Height, mm	91	211	440		

Full Size

Next generation CSA stacks utilizing advanced thin and lightweight cell structures

Automated Integrated Stacking & QC Station

Automated part handling, automated QC, and automated assembly are aided by the CSA small lightweight parts resulting in lower cost of stack manufacturing at higher quality than hand assembly

Robotic work cell for:

(a) Cell QC - measure / leak test
(>3 MW/shift/year throughput)
(b) Interconnect sub-assembly / QC
(> 3 MW/shift/year throughput)
(c) Stack build

(> 10 MW/shift/year throughput)

Full Height Stack Test

350 cell CSA

- Initial operation showed no degradation with a narrow band of voltage distribution (~40 mV for 350 cells)
- Stable operation for 674 hours when test stand failed and damaged stack due to no flows to the stack while the load kept on drawing current

Repeat of Full Height Stack Test

Test stand 23

• Completed over 1800 hours of fuel cell operation on reformate with good voltage stability and tight voltage spread (except cells group of 251-260)

CSA Stack Cost Update @1 GWe/yr Production

- CSA Stack Factory Cost was updated from its last estimate in 2019 (DE-FE0026093) including the following major modifications:
 - Cost sensitivity analysis of different parts containing nickel (part thickness and porosity) for high volume costing
 - Updating cost of re-designed nonrepeat parts (NRP) including top and bottom end plates and air manifolds
 - Advances in manufacturing automation
 - Cost trade-off analysis for Manganese-Cobalt Oxide (MCO) coating processes (in-situ versus ex-situ)
 - Update of cost parameters subject to Inflation

Cost Contributions Included:

- Procured Parts
- Commodity Materials
- Direct Fabrication Labor
- Direct Assembly Labor
- Indirect Labor
- Utilities
- Capital Recovery
- Equipment Maintenance
- Consumables
- Equipment Commission and Test
- Overhead & Building

Excluded:

 R&D, sales and marketing, G&A, warranty expenses and taxes

GWe/y Production Costing for Manganese-Cobalt Oxide Spinel (MCO) Coating

- Protective MCO interconnect coating is needed to prevent Crpoisoning
- Costing approach is to bring both in-situ and ex-situ coating processes into GW factory to assist feasibility against current cost basis o compare costs of labor, materials & capital
- Compare thin sub-micron in-situ against 5 micron ex-situ coating

Ex-Situ IC Fabrication

Yr2011 CSA-SOFC Stack Factory Cost Estimate for 1 GW Stacks per Year

- \circ SOFC @ 300 mW/cm² = \$111 \$/kWe out (gross stack DC)
- 0

- = \$116 \$/kWe out (gross stack AC)*
- < \$225 / kWe AC DOE cost target

* Assuming 96% DC to AC power conversion efficiency

Factory Cost Estimate – Waterfall Chart

fuelcellenergy

CSA-SOFC Stack Factory Cost Estimate

Yr2011 Costing for 1 GW stacks per Year – by Cost Category

40kW Multi-Stack Module Development

First-of-a-kind 40 kWdc multi-stack module is being developed to test an array of 6 CSA stacks

CFD Analysis for Module Air Distribution

Velocity Magnitudes 3.0 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 [m/s]

Stacks' flow variation from average (a, b denote two sides of each stack			
stack-in-air-1a	0.1%		
stack-in-air-1b	-0.2%		
stack-in-air-2a	-0.1%		
stack-in-air-2b	0.2%		
stack-in-air-3a	0.1%		
stack-in-air-3b	0.0%		
stack-in-air-4a	-0.2%		
stack-in-air-4b	0.1%		
stack-in-air-5a	0.2%		
stack-in-air-5b	-0.1%		
stack-in-air-6a	-0.3%		
stack-in-air-6b	0.1%		
Min = -0.3% Max – min = 0.5 %			

CFD modeling shows uniform flow distribution to stacks within the module enclosure

Solid Oxide Module Scale-up

Configurable & Scalable Stack Arrays:

- Accommodate module structural designs for both present and future systems
- Forkliftable and serviceable stack module for integration in packaged systems

Next Generation SubMW SOFC System

- Designed to operate with natural gas, biogas, and hydrogen fuels
- Provides waste heat for combined heat and power applications

Next generation SubMW system utilizes CSA stack technology

MW-Class SOFC System

Layout of the 1200 kW system including 4 stack modules and the associated distributed BOP

Thank You

Acknowledgements:

Support and Management under DOE/NETL Projects: DE-FE26199, DE-FE27584, DE-FE31648, and DE-FE31639

Dr. Shailesh Vora Dr. Patcharin (Rin) Burke

Enable the world to live a life empowered by clean energy

helcelle