

Development of Stable Solid Oxide Electrolysis Cells for Low-cost Hydrogen Production

Project Start: October 1, 021 Contract Number: DE-FE0032105

OxEon Energy, LLC

North Salt Lake, UT 84054

PI: Dr. S Elango Elangovan

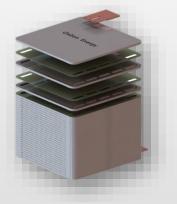
Subcontractor: Pacific Northwest National Laboratory

PNNL Technical Lead: Dr. Olga Marina

Beyond Current Potential

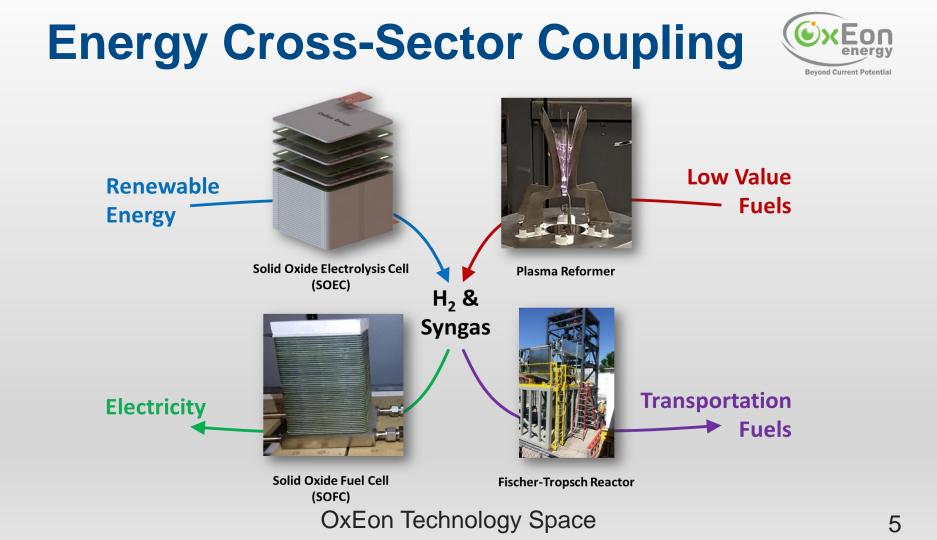
2021 SOFC Project Review Meeting – Virtual

OxEon Technology Background


OxEon Energy Company Overview

- North Salt Lake, UT R&D and Pilot
 - Manufacturing Facility
 - •New 24,000 ft² office, lab, and production areas
 - Material synthesis, Tape casting, cell and stack production, and testing; Synthetic fuel pilot plant
- 34 employees and growing
- Founded in 2017
 - Employee Owned and led by Joseph Hartvigsen and Dr. S. Elango Elangovan
 - 30+ years experience in OxEon's core technology development

OxEon Energy, LLC


Solid Oxide Fuel Cell and Electrolysis Stacks

- Longest running solid oxide fuel cell & electrolysis group
- Only flight qualified, TRL 9 SOEC unit in history
- 30kW/10kW reversible system test program in process

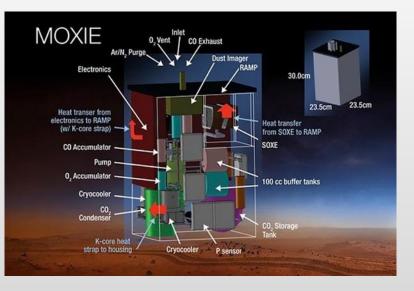
Fuel Reformation and Generation

- Plasma Reformer H₂ and Syngas for flare curtailment
- Fischer-Tropsch Reactors Modular design for transportation fuel production from H₂ and Syngas

End-to-end **power to synfuels pilot plant** in operation

SOEC for Space Applications

Mars 2020 Rover Mars 2020 Rover


1 of 7 major experiments to fly on the \$2.1 billion Mars 2020 Mission

Demonstration of In-Situ Resource Utilization (ISRU) technologies to enable propellant and consumable oxygen production from the Martian atmosphere

First oxygen production on 20 Apr 2021. Four additional tests to-date matching model/lab results

TRL 6 to 8 in 24 months. With successful Mars Operations, **TRL 9 reached** for first time in SOEC Propelled OxEon's manufacturing capabilities and interest from aerospace and defense markets 7

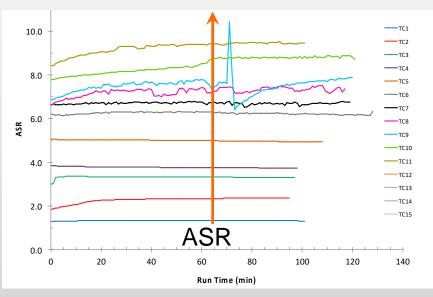
MOXIE's Formidable Technical Targets Con

- 20+ full operational cycles 10 preflight, 10+ mission - Op cycle = 2 hr heat up from ambient to 800 °C; 1 hr operation; and cool down
- 60 full operational cycles for proof of extensibility
- Oxygen Purity: 99.6%+ at end of life
- Seals operating against Mars near vacuum
- Capability to cycle to -65°C proof temperature
- Withstand 8 kN compressive force
- Withstand flight shock and vibe requirements (PF +3dB)
- Operate with dry CO₂ and avoid carbon

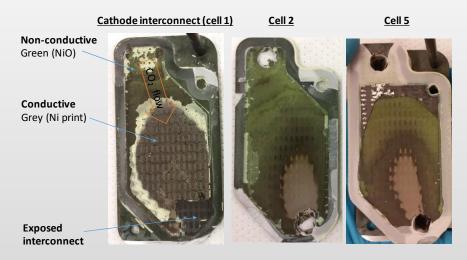
Completed five operational cycles on Mars meeting oxygen purity target

Project Objectives

DE-32105 Started on 01 Oct 2021


- Improve <u>performance</u> and reduce <u>degradation</u> through modification to baseline materials
- Demonstrate thermal cycling capability of stacks
- Demonstrate fuel electrode redox tolerance
- Evaluate oxygen electrode contamination effect
- Evaluate fuel electrode contamination effect
- Demonstrate hydrogen production at ~ 2 barg pressure
- Task integration with recent/on-going projects

NASA SBIR Project Foundational Results

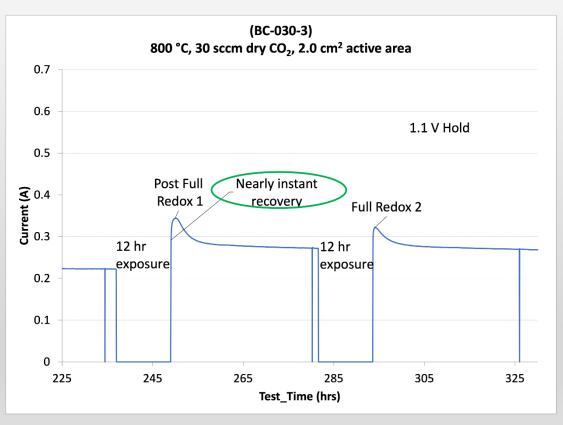

- Relevant to Dry CO₂ Electrolysis
 - •Demonstrated redox recovery without the use of reducing gas
 - •Rapid thermal cycle capability
 - •Combined redox-thermal cycle capability

Consequences of Oxidation – early MOXIE stack test

- STK-007 Operational History
 - 15 cycles, full thermal cycle with 120 min operation on dry CO2
 - Dramatic degradation suggestive of progressive oxidation front

15 cycles in dry CO2 => performance ~12% of initial

- STK-007 Post Test Examination
 - Progressive oxidation front confirmed
 - Non-conductive cathode and current distribution layers


Product CO recycled in MOXIE

Steam/CO₂ Redox Tolerance Approach

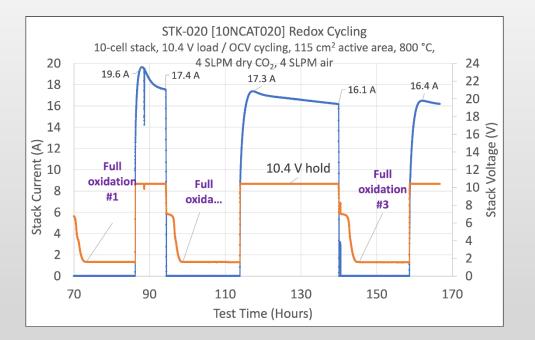
- Use of catalytic Ni based fuel electrode
 - Ni-ceria cermet
 - Inhibit coarsening by steric hindrance
 - •Redox tolerance by alloying for enhanced reducibility
 - Surface catalyst for augmented electrochemical performance
- This combination also improved thermal cycle capability

Oxidized Cathode Instantaneous Recovery

- Cathode exposed to dry CO₂ for 12 hours
- Near instant recovery upon application of voltage
 - No reducing gas provided
- Similar recovery after short term (20 min) exposure to dry CO₂

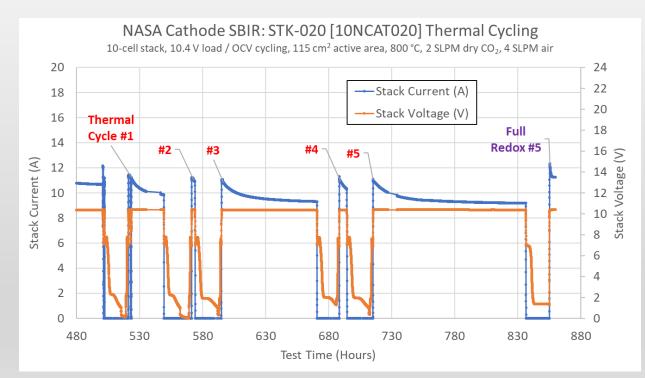
Performance recovery without external reducing gas

Button Cell Rapid Thermal Cycling and Redox Capability


(BC-030-3) Thermal Cycling 800 °C, 30 sccm dry CO₂, 2.0 cm² active area, 1.1 V hold 0.5 **Full Redox 5 Full Redox 4** Full Redox 13 Full Redox 12 0.4 Thermal cycle #11 **Current (A)** 0.2 **⊢ #70** #60 #39 #50 #40 #72 #20 #30 0.1 0 1800 2000 2200 2400 2600 Test Time (hrs)

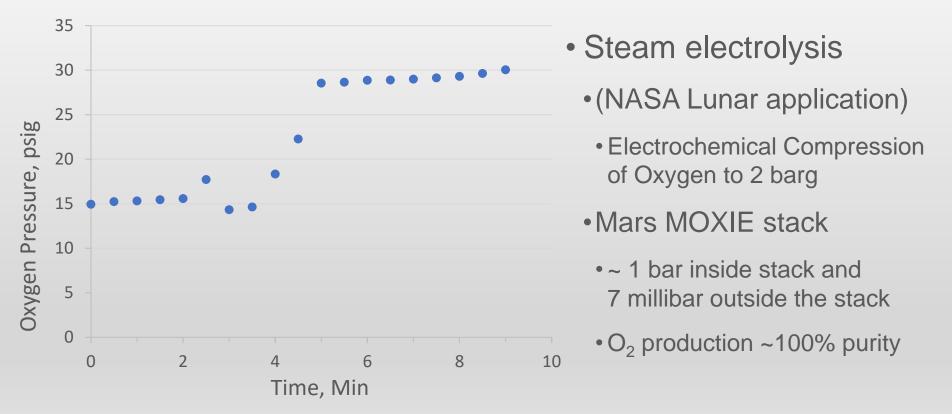
- Thermal cycle at 15 °C/min heating rate
- Total 72 rapid thermal cycles
- Only CO₂ flow during thermal cycle
- 13 Full redox cycles (long exposure to CO₂ and application of voltage for recovery)

Time dependent degradation will be addressed in this project


10-cell stack: Redox recovery

Stack performance recovers after redox cycle in dry CO₂ without using a reducing gas

Thermal/Redox Cycles in CO₂ - Stack


Stack stability demonstrated

- 400-hour test sequence
- 5 thermal cycles (in dry CO₂)
- 5 redox cycles

Thermal cycle in dry CO₂ also introduces redox cycles

Seal Capability at Pressure

Project Objectives (DE-32105)

Objective	DOE Project Focus
Improve performance and reduce degradation	Extend fuel and oxygen electrode advances from ongoing projects
Demonstrate thermal cycling capability of stacks	Button cells and stack testing
Demonstrate fuel electrode redox tolerance	Extend dry CO ₂ capability to steam electrolysis
Evaluate oxygen electrode contamination effect	Cr tolerance of oxygen electrode
Evaluate fuel electrode contamination effect	Effect of Si from the seal
Demonstrate hydrogen production at ~ 2 bar	Eliminate need for first stage compressor

DOE project tasks integrate with recent/on-going projects (NASA SBIR Phase II-E awarded)

Project Schedule

Teels	Task List	Year 1				Year 2			
Task		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1	Program Management and Planning								
2	Electrode Characterization								
	Oxygen Electrode / Current Collector								
_	Evaluation								
	Interface Improvement	i –							
	Fuel Electrode / Current Collector	1							
	Evaluation				_				
3	Electrode Catalyst Evaluation	į –							
4	Button Cell Characterization – Effect of Operating	i -							
	Condition	1							
5	Fuel Electrode Redox Testing								
6	Button Cell Thermal Cycling								
7	Short Stack Testing	İ.							
	Long term Testing								
	Pressurized Operation	1							
	PNNL Tasks	1							
1	Pressurized Testing (Button Cells)								
2	Fuel Electrode Contaminant Effect	i -							
3	Oxygen Electrode Contaminant Effect								
4	Redox Characterization	1							

01 Oct 2021

19

Proposed Milestones

Quarter	Milestone
Y1-Q2	Selection of electrodes, catalyst compositions and processing conditions to achieve degradation rate of 1%/1,000 hours
Y1-Q4	Determination of effect of operating conditions on cell degradation
Y2-Q2	Redox and thermal cycle testing confirm performance loss <1% after 5 cycles each
Y2-Q3	P&ID, HAZOP document and photos of the test stand modifications
Y2-Q4	Stack degradation of <2%/1,000 hours. Hydrogen production at elevated pressure
Y2-Q4	Report detailing 2 – 3 barg hydrogen production

Thank You

Additional Info: Elango@OxEonEnergy.com

Beyond Current Potential