

22nd Annual SOFC Project Review Meeting

Versatile Reversible Solid Oxide Cell System for Hydrogen and Electricity Production

> Emir Dogdibegovic Ph.D., Nexceris LLC November 18, 2021

Project Partners

Dr. Emir Dogdibegovic (PI), Nexceris LLC Dr. Robert Braun, Colorado School of Mines Dr. Scott Barnett, Northwestern University

Project Vision

Demonstrate prototype system level reversible solid oxide stack technology with world-class performance to allow hydrogen production cost of less than \$2/kg (at scale).

Award #DE-FE0031986
FOA2300Start/End Date12/01/2020-11/31/2023Total Project Value*
Cost Share %\$3.75M (DOE + Cost Share)
Cost Share: 20%

Project Impact

Efficient and durable RSOC systems will support the transition to renewable, energy-efficient, and low cost H_2 , and create paths to more resilient grid and the lowest cost grid balancing solution.

Project Motivation

- Nexceris has over 27 years' experience building and testing SOC stacks.
- Successfully commercialized protective and catalyst coatings for the SOFC market.
- Leverage this expertise to advance RSOC technology readiness.

Partnerships

- This project is a collaboration among three world-leading developers of solid oxide cell (SOC) technology: Nexceris. LLC (Nexceris) as the prime, and Northwestern University (NU) and Colorado School of Mines (MINES) as subcontractors.
- Dr. Barnett (NWU) brings an in-depth research background in the field of RSOC and fuel electrodes along with pressurized cell operation.
- Dr. Braun (CSM) brings an in-depth knowledge on RSOC system design, TEA, and pressurized stack testing.
- This exciting collaboration positions the team well for path to commercialization of RSOC technology.

Key Impact

State of the Art	Expected Advance
2-10%/kh	< 0.5 %/kh
~\$4-6/kg	≤ \$2/kg
< 1.0 A/cm ²	2.0 A/cm ²
	State of the Art 2-10%/kh ~\$4-6/kg < 1.0 A/cm²

Barriers

- Deconvolution of degradation mechanisms in reversible modes – use team's established knowledge from other/internal projects
- Demonstration of coating technology at production relevant scale - use Nexceris' existing stack platform
- Pressurized demonstration to increase efficiency use team's established knowledge

- Reversible operation requires robust electrodes in both operation regimes. Oxygen electrode(s) must have capability for ORR and OER without delamination at interface.
- Fuel electrode(s) must have ability to provide high fuel utilization (activity) and ability to electrolyze steam (or steam and CO₂), both at high efficiency.
- Commercialized coatings will suppress chromium poisoning.
- Pressurized cell/stack operation will provide realistic performance and degradation to be seen in a prototype system and eventually products.
- Techno economic analysis will estimate hydrogen production cost based on RSOC stack and ultimate system.
- Customers will be identified, and their specific needs/requirements will be better understood.

From electrodes to cells, from cells to stacks, from stacks to a prototype system.

5

 Minimum of 1 kW power generation in fuel cell mode (2+ kW in electrolysis mode) and roundtrip stack efficiency (RTE) of at least

Existing RSOC technology and capabilities at the three sites will

- Capability for dynamic switching between fuel cell and electrolysis modes in response to fluctuating grid demands.
- \circ $\;$ Low degradation rates.

60 percent.

serve as a starting point.

○ $1kW_E$ roundtrip stack efficiency of ≥ 70%.

Metrics (A/cm ²)	DOE Target	This Project	This Project				
SOEC (1.40 V)	-1.0 A/cm ²	-2.0 A/cm ²	-1.5 A/cm ²				
SOFC (0.70 V)	N/A	1.2 A/cm ²	1.0 A/cm ²				
Table 2. Target demonstration system metrics for this project.							

Table 1. Nexceris' RSOC cell and stack technologies.

Single Cell

Current Density

Table 2. Target demonstration system metrics for this project.							
RSOC demo system size (SOFC mode)	Roundtrip stack efficiency	Stack degradation target	Roundtrip stack efficiency at 5 bar (model)				
1 kW _E	60 %	<0.5%/1,000 h	≥70 %				

Stack

DD1	Milestone #	Milestone Description (BP1)	Target Month (Project Quarter)	Completion Status
DP1	2.1	Demonstrate successful reversible pressurized operation (up to 10 atm) on full button cells at 750-800 °C with steam electrolysis and co-electrolysis using the highest performing air and fuel electrodes.	9 (Q3)	Partially completed (70%)
Screening sub-scale/rainbow stacks Downselection of best electrode sets (NEX)	2.2	Initiate pressurized durability tests (reversible operation) on full button cells at 800 °C using the highest performing electrode set. Demonstrate at least 100-hour operation at 750-800 °C.	12 (Q4)	In progress
Finalizing 1 kW _E system design (NEX, MINES)	3.1	Electrochemical characterization of electrode materials sets is completed in stacks. ASR data obtained in both fuel cell and electrolysis modes.	6 (Q2)	Completed
Fuel electrode development	3.2	Electrochemical durability tests completed on baseline RSOC stacks with dynamic operation. A 500-hour test in both fuel cell and electrolysis modes will be completed at a nominal stack operating temperature of 800 °C.	9 (Q3)	Completed
Fuel electrode development Pressurized operation on button cells (NWU)	3.3	Electrochemical durability tests completed on RSOC stacks with down-selected electrodes and current collecting paste. Tests with at least 1,000 hours of operation will be completed in reversible mode at a nominal stack operating temperature of 800 °C.	12 (Q4)	Completed
Design for pressurized test rig completed (NEX, MINES)	3.4	Design of pressurized stack test rig completed for testing up to 10 bar at 800 °C and capability to operate lona-term	12 (Q4)	Partially completed (60%)
	4.1	RSOC system concepts developed and down-selected to two most promising concepts with target stack RTE of 60 percent.	3 (Q1)	Completed
Demonstrate 60% RTE via	4.2	The prototype RSOC demonstration system design completed, and long lead items ordered.	12 (Q4)	Partially completed (60%)
in-furnace testing Go/No-Go	DP1	Go/No-Go Decision Point: Demonstrate 60% stack round-trip efficiency on via in-furnace testing.	12 (Q4)	Completed (60% RTE achieved)

Project is on track and BP 1 Go/No-Go was successfully completed.

Leveraging Existing Technologies within the Team

Combination of various platforms/expertise at the three sites positions the project for success.

Downselected electrode sets for activity and durability testing, tradeoff.

Fuel Electrodes – Performance Comparison

- Firing conditions were optimized.
- No performance enhancement was observed for thicker (~20 μm) STFN07 (Sr_{0.95}Ti_{0.3}Fe_{0.63}Ni_{0.07}O₃) fuel electrodes
- Cell with optimal STFN07 fuel electrodes (STFC oxygen electrodes) show the higher current density and lowest R_p
- Pressurized test are in progress for downselected oxygen and fuel electrodes

Improved SOEC Electrode Materials Sets

Nexceris' SOEC electrode materials enable state-of-the-art performance and stability.

Northwestern

University

COLORADO SCHOOL OF

Stable stack operation and control of syngas composition in co-electrolysis mode.

State-of-the-art performance and durability demonstrated in reversible SOC stack.

In-furnace stack RTE of 60% achieved.

Representative system design schematics

- Primary features: recuperative reactant gas pre-heating with simulated functions of steam generation and water reclamation.
- Capable of 60% RTE and system RTE assessment.
- Lowest risk of initial system design.
- Demonstrates water recycle and steam generation.
- System RTE will be reduced due to removal of recycle blower; simulation of recycle using process modeling and gas delivery to simplify control.

Preliminary system designs have been downselected.

Fossil Energy

arpa.e

ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. DEPARTMENT OF

Office of

ENERGY

NEXCERIS

Special thanks to Nexceris team members and to all of Nexceris' customers and collaborators!

Thank you!

