

High Temperature Anode Recycle Blower for Solid Oxide Fuel Cells

Projects: DE-FE0027895 and DE-SC0020793 (SBIR Phase II)

Prepared by: Mohawk Innovative Technology, Inc. (MiTi[®])

Pls: Hooshang Heshmat, PhD and Jose Luis Cordova, PhD

For : 22nd Annual Solid Oxide Fuel Cell Project Review Meeting

U. S. Department of Energy – Office of Science

DOE Project Officer: Sarah Michalik

High Temperature Anode Recycle Blowers for Solid Oxide Fuel Cell

DOE Award No.: DE-FE0027895

Overall Program Objectives (FE0027895)

- To develop scalable Oil-Free High-Temperature Anode Recycle Blower (ARCB) technology for SOFC power plants
- Demonstrate TRL 7 by characterizing performance and life via testing in a real SOFC power plant

Sarah K. Michalik

• Project Manager

Hooshang Heshmat, PhD

- CEO & Technical Director
- Principal Investigator

Jose Luis Cordova, PhD

- Vice President of Engineering
- Program Manager
- Aero-Thermal Analysis

Rochelle Wooding

- Mechanical Engineer
- Testing

Hossein Ghezel-Ayagh, PhD

- Director SECA Program
- FCE Project Manager

Stephen Jolly

- SOFC systems engineering
- Operations manager

Andrew Ethier

• Process Engineer

MiTi's Anode Recycle Blowers for SOFCs

• High Temperature (HT) Anode Recycle Blower for Solid Oxide Fuel Cell—Phase II

- Award No.: FE0027895
- Performance Period: 10/01/2016 03/31/2022
- Total Phase I & II Budget:
 - DOE: \$2,098,408
 - MITI Cost Share: \$ 569,443

Phase I Prototype and Testing

Phase II Deliverable Unit

HT ARCB Full Assembly

4 X Production Prototypes Completed

Accelerated Life Test Loop Design

- Beginning of testing mid-August 2020
- Completed approximately 1200 hours of testing at realistic conditions.

1000+ Hours Laboratory Test Data

Typical Test Run Raw Data

Temperature vs Time

Typical Compressor Performance Map

Operation in FuelCell Energy's 100 kW Module

1000 hours on 9/29/2021

TRL-7 Demonstrated. Final Milestone Achieved!

Operation in FuelCell Energy's 100 kW Module

MiTi's TRL-7 ARCB performance data in FCE's plant

Current Status of Project DE-FE0027895

INNOVATIVE TECHNOLOGY

- All project milestones concluded
- TRL-7 achieved through testing in FCE's system
- Blower in testing at FCE will achieve upwards of 3000 hours
- Testing end date: 1/31/2021
- Wrapping up scalability, commercialization, and final reporting tasks
- Despite two no cost time extension (NCTEs), project budget is under control.
- Project end-date: 3/31/2021

Additive Manufacturing of High Temperature Centrifugal Impellers for Low Cost SOFC Recycle Blower

DOE SBIR Phase II Award No.: DE-SC0020793

Overall Program Objectives (SBIR Phase II DE-SC0020793)

NOVATIVE CHNOLOGY

- To enable generation of low-cost electricity in modular natural gasfueled solid oxide fuel cell (SOFC) power plants by reducing the cost of *balance of plant* (BOP) components
- To incorporate Additive Manufacturing (3D printing) methods into the development of impellers for high and ultrahigh temperature anode gas recycle blowers (ARCB) for SOFC BOP applications

Project Team

MOHAWK INNOVATIVE TECHNOLOGY

José Luis Córdova, PhD

- Vice President, Engineering
- Principal Investigator/Thermal Sciences

Rochelle Wooding

- Mechanical Engineer
- Aerodynamic Design/Program Manager

Hannah G. Lea

- Mechanical Engineer
- FEA Design/Data Analysis

Luke A. Montesano

- Mechanical Design
- Test Engineer

Zach Walton

 Technical Direction, Energy Applications

Zach Murphree, PhD

• Vice President, Technical Partnership

Sapphire Printer

"VELO3D addresses the most difficult additive manufacturing challenges, delivering a comprehensive end-to-end solution that enables on-demand manufacturing of production quality parts with unprecedented design freedom."

Background

Anode Recycle Blowers (ARCBs) for SOFCs

High Temperature (180°C)—Phase II

- DOE Award No.: FE0027895
- Collaboration with FuelCell Energy, Inc. (Danbury, CT)
- Demonstrated ~1200 hours of TRL-6 testing.
- Completed over 600 hours of TRL-7 testing in FCE's 200 kW power plant

Ultra-High Temp. (700°C)—Phase I

- DOE Award No.: FE0031148
- Performance Period: Oct 2017-Mar 2019

Supercritical CO₂ Blower w. 3D-Printed Housing

Heat Transfer Fluid (HTF) Circulator for Gas Phase Pathway CSP Systems

- DOE Award No.: DE-EE0008374
- Operating Conditions
- Supercritical CO₂
- 1.5 MW Thermal Load HTF Circulator
- Pressure: 127 bar to 240 bar
- Temperature ~550°C up to 700°C

Phase I results: impellers successfully made via additive manufacturing

During Phase I, MiTi set out to answer the following questions:

- What improvements can be derived from 3D printing?
 - Fabrication cost?
 - Aerodynamic improvement?
- Are 3D-printed materials mechanically sound for the application conditions?
 - Characterization of mechanical properties
- Is it possible to achieve the required impeller geometries?
 - Meet mechanical/manufacturing drawing dimensions
 - Achieve acceptable surface finish

Improvements Derived from Additive Manufacturing

Potential Cost Benefits

• At prototype or low count production runs, centrifugal impellers are the highest cost mechanical component in turbomachinery.

Cost per unit—Inconel 718 impeller for SOFC Blower (700 ^o C gas)					
Quantity	Manufacturing Method	# Blades	Unit Cost		
1 or 2	5 Axis Machining	19	\$18950		
1 or 2	5 Axis Machining	15	\$15845		
5 to 10	Investment Casting	15 or 19	\$3800 to \$1900		
2	SLM-3D Printing	15 or 19	\$578		
12	SLM-3D Printing	15 or 19	\$353		

• CNC prototype machining results in approximately 60 to 70% loss of material volume (or mass).

Blank initial mass2.43 kgFinished impeller0.73 kgMaterial wasted1.67 kgCost of forged Inconel 718\$130/kgCost of powdered Inconel\$97/kgMaterial cost—machined\$316.00Material cost—3D printed\$71.00

Potential Aerodynamic Benefits

• Traditional manufacturing methods impose geometric limitations that result in aerodynamic performance trade-offs and efficiency penalties. Examples:

Tool availability limits number, depth, and back-sweep angle of blades.

3D-Printed Inconel 718 Mechanical Properties

Under the s-CO2 circulator program (DOE DE-EE0008374)

Carbor

Silicon

Sulfur

Nickel

Chromiu

Manganese

Phosphorus

Molybdenur

Metallography

Chemical Composition

< 0.0020

0.040

0.013

0.0012

17.49

54.1

3.18

< 0.002

0.042

0.013

0.001

18.03

0.52

0.233

5.310

0.0029

0.022

<0.010

< 0.003

0.032

0.011

0.036

0.0010

0.025

0.0002

0.063

0.025

0.0071

0.35 max

0.35 max

0.015 max

17 0-21 0

4.75-5.50

< 0.0020

0.039

0.012

0.0039

19.01

52.8

3.16

Tensile Strength (12 samples)

rain test	t		
nachine	Material Property	3D Printed Average (Ambient)	3D Printed Average (1100 °F)
13	Young's Modulus (ksi)	2.89E+04	2.12E+04
1-14	Yield Strength (ksi)	156.9	130.0
123	Ultimate Strength (ksi)	190.8	156.3
	Material Property	Bar Stock AMS	Bar Stock AMS
	a Material Property	5662/5663 (Ambient)	5662/5663 (1200 °F)
1/20	Young's Modulus (ksi)	2.90E+04	2.37E+04
- 1	Yield Strength (ksi)	150.0	125.0
	Ultimate Strength (ksi)	185	145

Phase I results: obtained 0.2% yield stress, modulus of elasticity, ultimate stress, & elongation, for different print orientations.

3D-Printed Impeller Fabrication

Is it possible to achieve the required impeller geometries?

Yes it is!

Evolution of process during Phase I:

First trial: • Excessive material build up in bottom face of blades • Poor axial symmetry Second trial: • No excess material build up • Better axial symmetry • Problems with blade sag

Third trial:
All critical geometries adhere to the manufacturing drawing dimensions

Impellers at different heat treat stages:

The Phase II goals are to:

- Continue characterization of mechanical properties, e.g. fatigue and creep
- Fabricate impellers and other suitable components using 3D-printingenabled geometry
- Integrate new or recommission used ARCB prototypes, and install impellers/volutes for testing
- Test component and system performance, including accelerated life
- Demonstrate through techno-economic analysis the cost reduction for SOFC BOP and in general for other applications

Phase II Program Tasks

MOHAWK INNOVATIVE TECHNOLOGY

- Task 1. Project Management
- Task 2. Characterization of Mechanical Properties of Additive Manufacturing Materials
- Task 3. ARCB Scaling and Design Modifications for Additive Manufacturing
- Task 4. Manufacture by 3D Printing of Impellers, Volutes, & Selected Parts for ARCBs
- Task 5. Modification/Integration of ARCBs for Incorporation of 3D-Printed Components
- Task 6. Testing of ARCBs Equipped with 3D-Printed Impellers and other Parts
- Task 7. Techno-Economic Analysis

- Planned project timeline is 24 months long.
- Project start date: 8/23/2021
- Planned end date: 9/22/2023
- Held Kick-Off Meeting on 10/19/2021.
- Task 2 (first technical task) is underway.
- Project is on time and on budget.

Questions & Feedback

Thank you for your attention!

