

REDOX

Pacific Northwest

2021 Annual SOFC Project Review Meeting (11/17/2021)

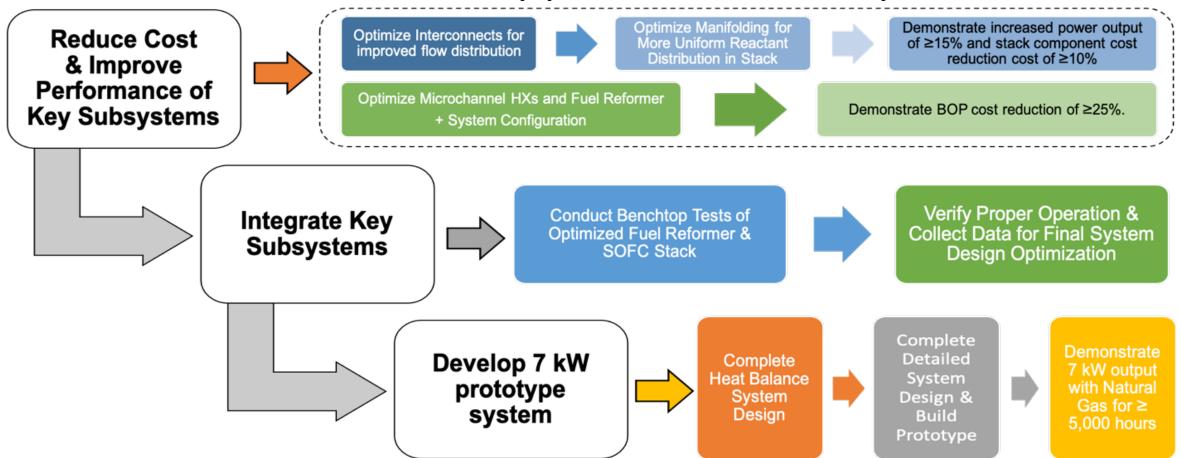
Low Cost SOFCs for Small-Scale • Bryan Blackburn (Co-PI) Distributed Power Generation • Stelu Deaconu (Co-PI) (FE0031976)

Agenda

- Project Goals/Objectives
- Technical Approach
 - Stack: Increased power and reduced cost
 - Key BOP: Microchannel HX/SR
 - System Design: smaller/fewer key BOP and industry best practice
- Project Structure
- Project Progress

Project Goal: Reduce cost of small-scale (5-25kW) SOFC power systems to $\leq \$1,000$ /kW at lower production volume (e.g., ≤ 250 MW/year or 10,000 25-kW systems/year).

Small-Scale Power Systems & Prototypes

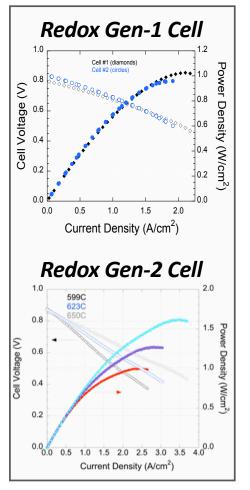

- Redox's Product Strategy
 - Single scalable system platform to address currently underserved markets (e.g., < 100 kW)
 - Daisy chain smaller units for larger implementations
- Key Subsystems (5-25 kW scale)
 - Stack hotbox, fuel processor, air delivery, electronics (control/power)
 - Stack hotbox is 25-40% cost
 - \$/kW \uparrow substantially as system size \downarrow

Project Objectives

- ↓ cost of stack hotbox subsystem with optimized interconnects (IC) and manifolds
- ↓ cost of fuel processor and air delivery subsystems with optimized microchannel HX/SR and system config.
- Design, build, and demonstrate integrated, 7 kW system prototype running on natural gas for ≥ 5,000 hours
- Demonstrate a path to $\leq $1,000/kW$ at production volumes $\leq 10,000$ systems/year with a detailed techno-economic analysis

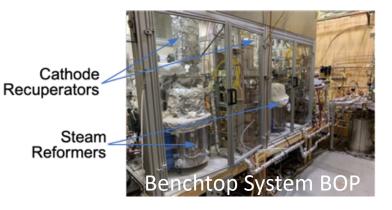
Technical Approach Summary

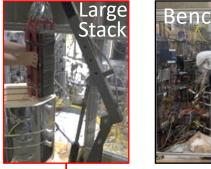
- Stack: improved thermal management and heat recovery & (ultimately) improved cell/stack durability
- HX/Fuel reformer: simpler manufacturing, improved thermal management, increased system efficiency
- **TEA:** Show clear path for meeting cost targets of \leq \$1,000/kW at \leq 10,000 systems/year 11/17/2021 REDOX POWER SYSTEMS LLC


Project Structure: Tasks

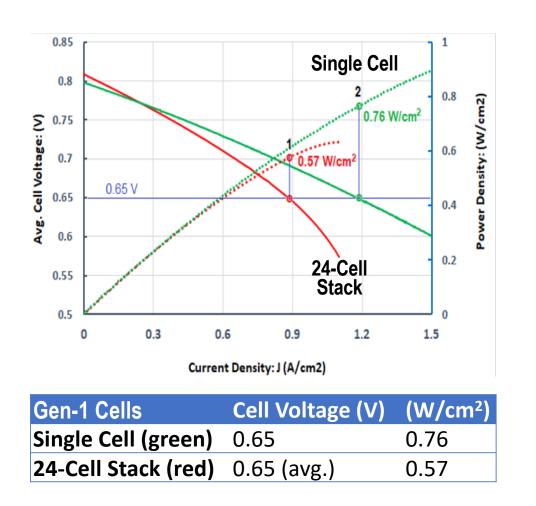
Task 1: Project Management Sub1.1– Project Management Plan (PMP) Sub1.2–Technology Maturation Plan (TMP)	 Project schedule/milestones Risk management Path to reaching cost targets
Task 2: Optimize Performance/ Reduce Cost Stack Hotbox Sub2.1–Reduce the IC Cost and Improve Flow Distribution Sub2.2–Optimize Manifolding for More Uniform Reactant Distribution in Stack	 Flow field visualization studies/similarity analysis Flow field, multi-physics simulations Stack tests Conductivity, seal integrity, mechanical tests (thinner parts) Geometry modification internal/external manifold, simulations Stack manifold pressure tests
Task 3: Reduce Cost of Critical BOP Sub3.1–Reduce the Cost of Microchannel Heat Exchangers and Fuel Reformer Sub3.2–Evaluate Performance of Reduced Cost Microchannel HX and SR BOP	 Cost-of-manufacturing evaluation (manufacturing processes, device geometry, and/or catalysts) Overall SOFC system design requirements + system config. System heat balance modeling (reduce size, number HX) Multi-physics modeling verification Degree of internal reforming

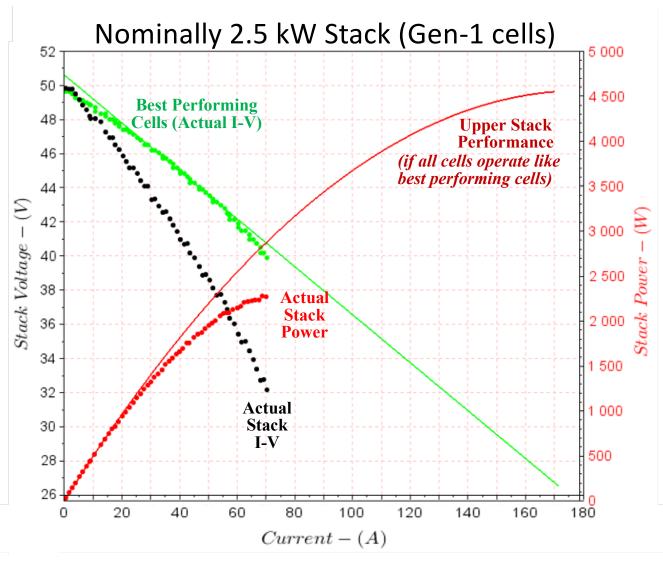
Project Structure: Tasks

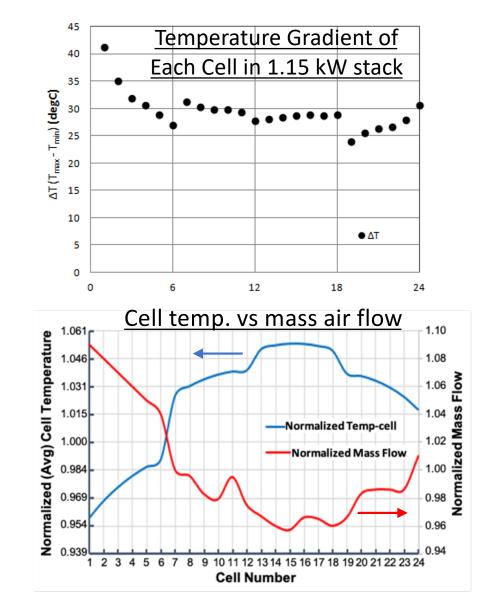

Task 4: Complete Detailed Design for a 7 kW SOFC Power System Sub4.1–Test Fuel Processor with Updated Stack Sub4.2–Complete Detailed Design for 7 kW SOFC Power System Sub4.3–Build the SOFC System Prototype	 Integrated testing of fuel processor/stack hotbox (≥1.2kW) Measure electrical, thermal data; eval. heat transfer efficiency, fuel reforming composition, and pressure drops Finalize test site (permitting, environmental approval, etc.) Integrate key subsystems, detailed layout, proper mating Design integrated controls and safety chain Shipping/assembly/testing criteria + checkout tests
Task 5: Demonstrate 7 kW SOFC Power System at a Relevant Test Site	 Delivery and installation at host site Startup, heat up, conditioning/burn-in, characterization Remote operation and monitoring (5,000 hours)
Task 6: Complete Techno-Economic Analysis Sub6.1–Integrate Individual Cost Models for Small-Scale SOFC System Sub6.2–Run Sensitivity Analysis and Refine Cost Projections Based on Test Data	 Integrate, update, and validate cost models (manufacturing processes and component design characteristics) Complete TEA based on final designs and test data (cell, stack, BOP component, capital, O&M costs) Sensitivity analysis (e.g., impact of lower operating temp.) Path to target cost, including specific cost reduction strategies (e.g., roll-to-roll (R2R) cell manufacturing)


Redox SOFC Technology

- GDC based electrolyte on robust (standard) Ni-YSZ support
 - Lower operating temperature
 - High power density
- Stacks as large as ~2.5 kW on natural gas
- But in larger stacks we are leaving power "on the table"
 - Non-uniform flow across the stack and within each repeat unit
 - Non-uniform temperature distribution

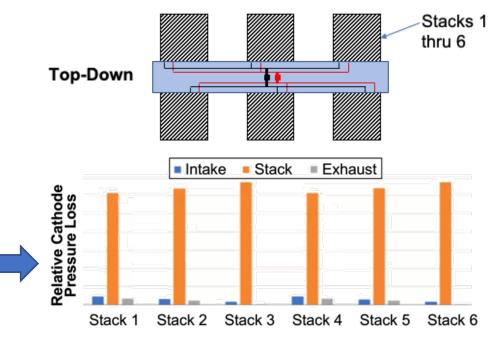





What can be gained from stack optimization

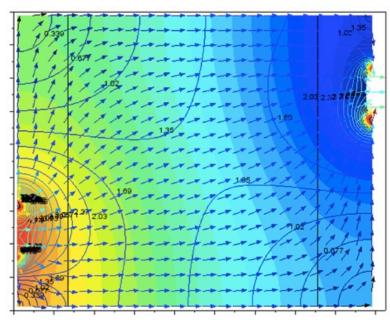
Stack Thermal Management

- Thermal issues impacting stack
 - Stack temp nonuniformity
 - Cell temperature nonuniformity
 - Inadequate stack cooling
 - Thermally driven gas flow nonuniformity
- Stack cooling options
 - Excess air
 - Internal reforming
 - Heat transfer to hotbox
- Largest gradients near manifold, and therefore optimized manifold (flow distribution/quenching) will improve thermal management
- Better internal/external manifold and optimized IC flow field can yield > 15% more power

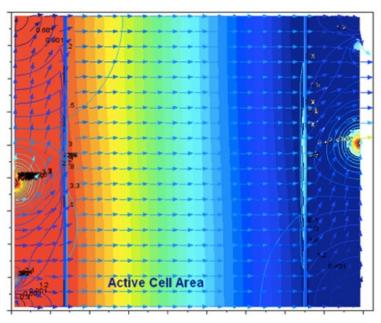


Stack Optimization: Internal / External Manifolding

- Optimized internal manifold
 - Improved pressure/flow distribution
 - Must obey known rules for sealing
 - Avoid increased manufacturing cost
- External Manifold
 - Reduce stack cost
 - Thinner endplates (material/design change)
 - Modify flow arrangement (inlet/outlet) locations
 - AVL's CFD modeling results for current iteration of stack manifold and optimized stack design shows acceptable balanced flow and pressure loss for stack assembly 11/17/2021 REDOX POWER SYSTEMS LLC

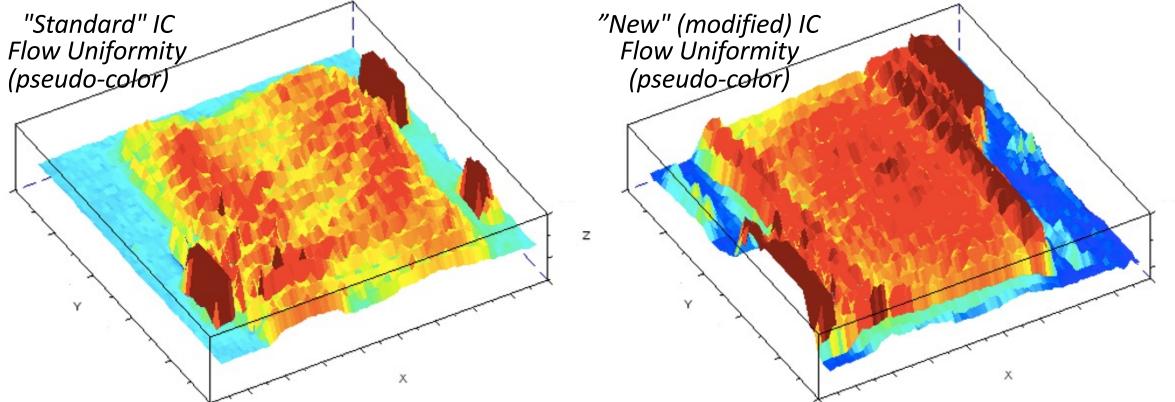

Proposed Prototype Configuration

System output power	≥ 7 kW (DC)
System Efficiency	≥ 50% (LHV)
Stack (nominal) output power	1.2 kW (DC)
Anticipated number of stacks	6
Max. Number of cells/stack	32-36*
Anticipated stack manifold arrangement	3 groups of stacks connected in parallel (stack
i i i i i i i i i i i i i i i i i i i	module), where each group of stacks consists
	of two series-connected stacks (submodule)
Stack submodule and module total	45-50 V
(nominal) output voltage	
Stack submodule (nominal) output current	46-52 A
Stack module (nominal) output current	138-156 A
Stack module (nominal) output current	150°150 A

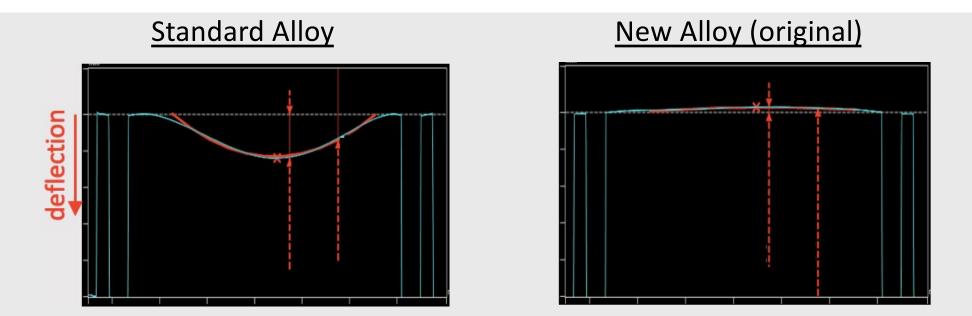


Improved IC Flow Distribution: CFD Modeling

"Standard" Geometry

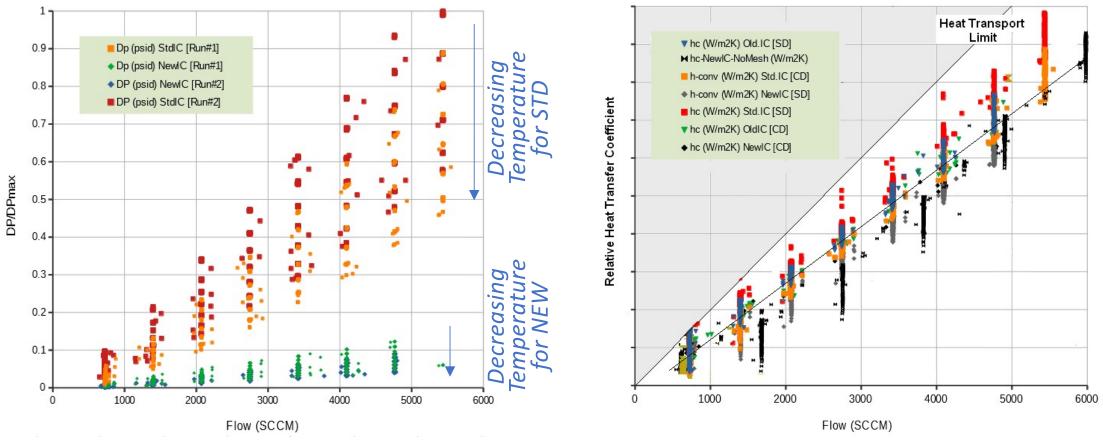


"New", Slightly Modified Geometry


- Extra power through improved flow uniformity (fewer repeat units: \downarrow cost)
- Simulated pressure & velocity
 - >70% more uniform flow (relative flow in corners vs central region)
 - 55% increase in total interconnect flow at same available driving pressure
- Slight modification to internal manifold and inlet/outlet portion of flow field results in dramatically improved flow distribution

Improved IC Flow Distribution: Flow Visualization

- Flow visualization set up and performed in accordance with principals of similarity analysis
- Video recordings were used to capture smoke entrained gas flow (at room temperature)
- Still images were then processed (e.g., remove background with now smoke) and used to create instantaneous light intensity maps due to light reflection from smoke particles
- Currently working to evaluate cell performance with modified IC 11/17/2021 REDOX POWER SYSTEMS LLC


Thinner Stack IC & Endplates

Coupon Tests with same thickness at 650°C (clamped ends/unsupported middle – extreme case)

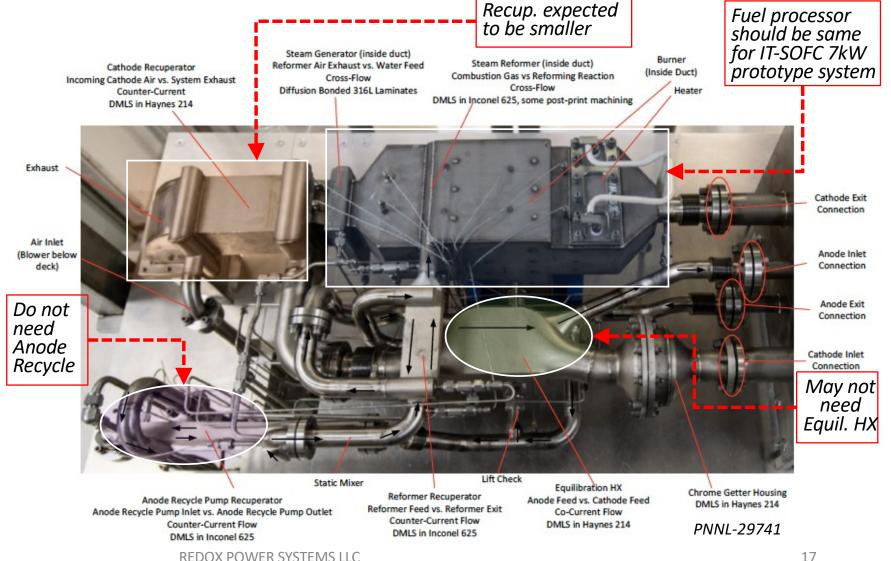
- Reduced cost through decreased thickness, but must maintain mechanical integrity
 - Lower material cost and fabrication cost (e.g., stamping)
- Supply chain issues have delayed progress in this project
- Recently, a slight variant of the "new" material has been sourced domestically
 - Initial sag tests suggest very similar performance as the original "new" alloy

Interconnect Performance: Pressure Drop & Heat Transfer

- The stack pressure drop and convective heat transfer coefficient are important metrics for system design
- Differences in pressure drop vs flow rate for the "Std" and "New" interconnect designs \rightarrow 8X reduction in dP observed
- H-conv: small decrease for "New" interconnect but not expected to impact performance much (dP so low)

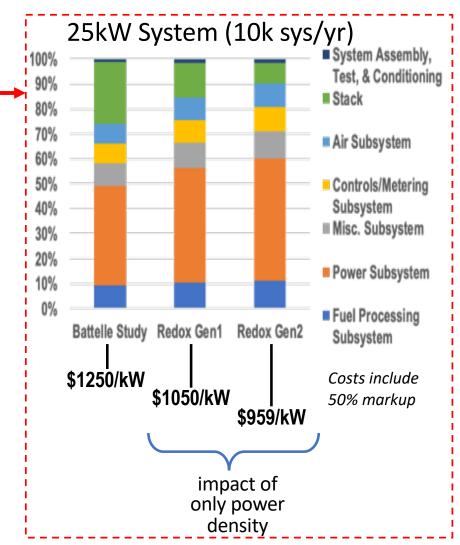
PNNL Microchannel Heat Exchanger/Steam Reformer

- High-Efficiency Microchannel HX
 - laminar flow, small hydraulic diameter channels (0.005- 0.040")
 - high surface area to volume ratio
 - high heat transfer coefficient (h)
- Compact, Fast Acting Steam Reformer
 - High-*h* HX quickly transfers heat into SR catalyst
 - A fast response reformer allows for better fuel load following
 - provides further enhancement to system efficiency by reducing the amount of excess fuel during high transient loading.
- Low volume HX and SR → more compact system, lower heat loss



PNNL HX: same dP, 28 times less vol., 7% more eff.

Key BOP in PNNL SOFC Test Stand Platform


- Provides test bed for new IT-SOFC specific design
- Optimize HX/SR designs for ↓ manufacturing cost (maintain performance)
 - Simplify component design (single pass)
 - Evaluation of simpler (more cost effective) manufacturing methods
 - Alternate materials (Redox SOFC operates at lower temperatures)
- System configuration that reduces cost
 - Reduced size or number of heat exchangers (including SR)

11/17/2021

TEA & Path to Target Costs (TMP)

- Government sponsored Battelle ('17) & LBNL/SA ('15) studies as cost benchmarks
 - PNNL still working to update cost model for microchannelbased fuel processor and cathode recuperator
 - Some delays in receiving sizing/cost information for some of the manufacturing equipment
- Additional savings expected project outcomes
 - Lower operating temperature (600-650°C vs ~800°C)
 - Smaller HXs/blower lower stack cooling requirements
 - PNNL microchannel HX/SR (≥25% cost reduction)
 - Lower stack endplate cost single central manifold
- •Other Efforts in support of technology maturation plans
 - High speed roll-to-roll (R2R) dev with ORNL (NFE-17-06781)
 - Same cell performance but reduced cost at < 5 MW/year (i.e., < 200 sys/yr)
 - TCF award offers continued R2R development (NFE-20-08382) 11/17/2021 REDOX POWER SYSTEMS LLC

Battelle (2017):Manufacturing Cost Analysis of 1, 5, 10 and 25 kW Fuel Cell Systems
for Primary Power and Combined Heat and Power ApplicationsLBNL/SA (2015):A Total Cost of Ownership Model for Solid Oxide Fuel Cells in
Combined Heat and Power and Power-Only Applications

7 kW Demo Test Site: Washington Gas Chillum Station

- Washington Gas has joined the project team and will host the demo site for the 7 kW prototype
- The prototype will be situated near a natural gas backup generator and feed power into the building

Project Schedule

J								_										Year 3				
Project Year				Year 1				-			Yea											
Project Month		3 4		6 7		_	0 11 12	-			_	19		22		25 2		_			_	· · · · ·
Project (Calendar) Quarter		1		Q2		23	Q4		Q5		Q6		Q7		Q8	+	Q9		Q10	_	11	Q12
Calendar Year Calendar Month				8 9	9 10 11	1.0			1 5	2022 6 6 7 8 9 10 11 1					2023 12 1 2 3 4 5 6							
1.0 Project Management and Planning	12 1	2 3	4	5 6		8 9	9 10 11	12	1 2	3 4	. 5	6	7 8	9	10 11	12	1 2	3 4	5 6		8 9	10 11
M1.1 Hold Kickoff Meeting	*					-						-				-						
2.0 Optimize Performance and Reduce the Cost of the Stack Hotbox Subsystem	*					-		-														
																			LEGEND			
2.1 Reduce the Interconnect Cost and Improve Flow Distribution																			* Mik			
M2.1 Interconnect flow distribution improved for ≥15% power gain, ≥10% lower cost							*												◆ Go	/No-Go D	ecision F	Point
2.2 Optimize Manifolding for More Uniform Reactant Distribution in Stack								_														
M2.2 Manifolding Pressure drop reduced by 12%				_		_			*													
3.0 Reduce Cost of Critical Balance of Plant																						
3.1 Reduce Cost of Microchannel Heat Exchangers and Fuel Reformer																						
M3.1 Cost of Microchannel Heat Exchangers Reduced by ≥25%					,	*																
3.2 Evaluate Performance of Optimized Microchannel HX and SR BOP																						
M3.2 Verify That Cost Reductions Do Not Reduce HX/SR Performance by More than 5%											*							_				
4.0 Complete Detailed Design for 7 kW SOFC Power System																						
4.1 Test Fuel Processor with Updated Stack																						
M4.1 Integration of Key BOP/Stack Subsystems and Checkout Tests Complete													*									
4.2 Complete Detailed Design for 7 kW SOFC Power System																						
M4.2 Design, Integration, and Testing of Package, Controls, and Electronics Complete															*							
G1 Go/No-Go Decision Point															└ ••							
4.3 Complete Build of 7 kW Prototype System																						
M4.3 Prototype SOFC System Build is Complete With Successful Checkout Tests																		*				
5.0 Demonstrate 7 kW SOFC Power System in Relevant Test Environment																		•				
M5.1 System Prototype Startup/Initial Characterization Successfully Completed																			*			
M5.2 SOFC Prototype Operated for ≥ 5,000 Hours With Natural Gas Fuel																						*
6.0 Complete Techno-Economic Analysis																						
6.1 Integrate Individual Cost Models for Small-Scale SOFC System																						
M6.1 Complete Integration and Update of Cost Models				*																		
6.2 Run Sensitivity Analysis and Refine Cost Projections Based on Test Data																						
M6.2 Demonstrate 25 kW SOFC system cost of ≤ \$1,000/kW at ≤ 10,000 sys/year																						*

*

Acknowledgements

- Jason Montgomery NETL Program Manager
- Dr. John Kasab AVL Powertrain Engineering
- Dr. John Hardy and Greg Whyatt PNNL
- Andrew Kent Washington Gas