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Project objectives

Develop deep analysis net with causal embedding for coal-fired power plant fault detection
and diagnosis (DANCEA4CFDD), a novel end-to-end trainable artificial intelligence (Al)-based
multivariate time series learning system for flexible and scalable coal power plant fault
detection and root cause analysis
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Project objectives

Conventional data

Motivation: EXiSting asset health management driven approach Multiple manual touch points for model update
solutions have limited adaptability. Therefore, there is a
critical need for a well-designed end-to-end solution
that is applicable to a wide range of applications by
leveraging large amounts of historical normal operation
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Machine Learning
Hand crafted features . model [Support
| [variance, mean, Featureselection | | yector Machine,
> k ' [PCA, ICA]
peaks, etc.] Random Forest,
Neural Network]

data from existing coal plants. ) ’

Deep Similarity Net

Technology Innovation: a novel end-to-end trainable
artificial intelligence (Al)-based multivariate time series [ Pre-processing }—|—>
learning system for flexible and scalable coal power GE DANCE4CEDD Al
plant fault detection and root cause analysis. Learning System

AntiCipated beneﬁtS: i Retrainable with new
« Applicability to a broad range of asset types and plant C ~) data for model update
configurations for improving coal-fired power plant

reliability

* High scalability—reduce development time by
eliminating the need for manual and time-consuming
domain expert feature engineering
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Progress summary

» Streamlined Al anomaly detection - end to end trainable

* Approach for few faulty case learning: how to effectively
leverage a small sample of faulty data

* Anomaly interpretation for diagnosis

* Application to a range of plant use cases




Current state of DANCE4CFDD system

time_series_ai ~/repo/time_series_ai

examples Carry research studies:
sl s - Simulation data study
sl - Plant data study
tep - Secure Water Treatment (SWaT) dataset
e - Tennessee Eastman Process (TEP) benchmark dataset

models
o init__.py \
» base_Istms.py
» base_model.py
» base_tcn.py
» base_transformer.py

@ block_input_models. . .
rciian > Core model libraries

2 cnn_model.py

» graph_models.py

@ metric_model.py

@ rnn_models.py

2 tcn_models.py

» transformer_models.py )
2 _init__.py

, dataset py \  Supporting functions:

@ evaluation.py . . . - .
L hincins i > - Time series data construction for training and testing
RSy - Performance evaluation functions

- Other utility functions

2 modules.py
2 preprocess.py
2 utils.py )




Research focus

Industry needs Approaches
fl)—>%, A
* Majority of data is under « Unsupervised learning: only Tl loss = L(%e, x)
normal operation, only small normal operation data is used S Eimiutel Aniatetet aintall
number of faulty events to
learn from
: -
. Superv.ised learning: both normal Flx, ) —> %,
operation data and faulty dataare ~ _______ + o loss =L(xpxpc)
available e Tt Rl
* Few faulty case learning:
normal operation data with a
small sample of faulty data




Datasets

» 7 days of normal operation

» 4 days of 41 episodes of attack

» 36 attacks are physical, treated as faults
* 1/second sampling

* 24 sensor + 27 actuator tags

* Two public datasets:
- Secure Water Treatment
(SWaT) testbed dataset™

 Simulation data

-  Tennessee Eastman

— . 41 11 actuator t
Process (TEP) dataset * [ DosensorT ALactuatortags
20 faults
* Southern Plant Barry Unit 5 * 16 months, 3994 tags, 1/min time
series data
data « NERC GADS report data (reliability
events)

* https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/ 8

A https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/6C3JR1



https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1

Variable Description Variable Description

XMEAS(1) A feed (stream 1) XMEAS(22) Condenser cooling water outlet temp
L XMEAS(2) D feed (stream 2) XMEAS(23) Composition of A (stream 6)
XMEAS(3) E feed (stream 3) XMEAS(24) Composition of B (stream 6)
I XMEAS(4) Total feed (stream 4) XMEAS(25) Composition of C (stream 6)
XMEAS(5) Recycle flow (stream 8) XMEAS(26) Composition of D (stream 6)
XMEAS(6) Reactor feed rate (stream 6) XMEAS(27) Composition of E (stream 6)
XMEAS(7) Reactor pressure XMEAS(28) Composition of F (stream 6)
XMEAS(8) Reactor level XMEAS(29) Composition of A (stream 9)
XMEAS(9) Reactor temp XMEAS(30) Composition of B (stream 9)
XMEAS(10) Purge rate (stream 9) XMEAS(31) Composition of C (stream 9)
XMEAS(11) Separator temp XMEAS(32) Composition of D (stream 9)
XMEAS(12) Separator level XMEAS(33) Composition of E (stream 9)
XMEAS(13) Separator pressure XMEAS(34) Composition of F (stream 9)
XMEAS(14) Separator underflow (stream 10) XMEAS(35) Composition of G (stream 9)
XMEAS(15) Stripper level XMEAS(36) Composition of H (stream 9)
XMEAS(16) Stripper pressure XMEAS(37) Composition of D (stream 11)
XMEAS(17) Stripper underflow (stream 11) XMEAS(38) Composition of E (stream 11)
XMEAS(18) Stripper temperature XMEAS(39) Composition of F (stream 11)
XMEAS(19) Stripper steam flow XMEAS(40) Composition of G (stream 11)
XMEAS(20) Compressor work XMEAS(41) Composition of H (stream 11)
XMEAS(21) Reactor cooling water outlet temp
@ @__ @ ______ . Variable Description Variable Description
: : ﬁ 9 XMV(1) D feed flow (stream 2) XMV(7) Separator pot liquid flow (stream 10)
cWS @ ";"5 XMV(2) E feed flow (stream 3) XMV(8) Stripper liquid product flow
Com, H | XMV(3) A feed flow (stream 1) XMV(9) Stripper steam valve
P — . @ H XMV(4) Total feed flow (stream 4) XMV(10) Reactor cooling water flow
H i XMV(5) Compressor recycle valve XMV(11) Condenser cooling water flow
A ----: XMV(6) Purge valve (stream 9) XMV 22— Agitatorspeed
RS
A
G
5 ; . _@ Fault ID Description Type Magnitude
E ___@ IDV1 A/C Feed ratio, B Composition constant (stream 4) Step 203%
C R IDV2 B Composition, A/C Ratio constant (stream 4) Step 105%
oo = ---@ IDV3 D Feed temperature (stream 2) Step 5%
R @ “1a H ___@ IDV4 Reactor cooling water inlet temperature Step 9%
@ -IN _f_. (Ca— ‘ VeplLia - IDV5 Condenser cooling water inlet temperature Step 15%
A H H o . IDV6 A Feed loss (stream 1) Step 342%
@ o @ H pt——CWR ) — ' IDV7 C Header pressure loss - reduced availability (Stream 4) Step 25%
xp)--{Y @ ..... 2 ... @ l Slripperl A f IDV8 A, B, C Feed composition (stream 4) Random variation 736%
3 @ . Z N[ @ H IDV9 D Feed temperature (stream 2) Random variation 8%
o 1 A tee @ 3 IDV10 C Feed temperature (stream 4) Random variation 112%
@-- R L IDV11 Reactor cooling water inlet temperature Random variation 567%
Y "@ IDV12 Condenser cooling water inlet temperature Random variation 8%
z ...@ IDV13 Reaction kinetics Slow drift 16%
@@ Le E IDV14 Reactor cooling water valve Sticking 1285%
T o 4 . R "@ IDV15 Condenser cooling water valve Sticking 5%
ABIC = Ly N IDV16 Unknown Random variation 78%
e IP'OdU§> IDV17 Unknown Random variation 557%
IDV18 Unknown Step 57%
IDV19 Unknown Random variation 73%
IDV20 Unknown Random variation 310%
Source: H. Chen, P. Tino, X. Yao, Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space, Computers and Chemical 9

Engineering (67), 2014.



Study summary

Autoregressive formulation

fe ) ™%,

T & =Xt — X
Yy Sy — : /V t t t
=T - Xt-2 Xe-10 x4

MD (Mahalanobis Distance)

MSE (Mean Square Error)

Fault LSTM Bidirectional-LSTM TCN Attention LSTM Transformer Transformer

MD MSE MD MSE MD MSE MD MSE MD MSE MD MSE
1 99.96% 99.74%| 99.97% 99.73%| 99.86% 99.61%| 99.96% 99.72%| 99.93% 99.64%| 99.92% 99.66%
2 99.09% 97.99%| 99.05% 97.98%| 98.55% 97.93%| 99.02% 97.96%| 99.00% 98.45%( 98.94% 98.40%
3 5.77%  5.12%| 5.65% 5.15% 5.32% 5.12%| 5.69%  5.08%| 5.38%  5.00% 5.25% 5.03%
4 100.00% 99.95%| 100.00% 99.96%| 100.00% 100.00%| 100.00% 99.96%| 100.00% 99.96%| 100.00% 99.99%
5 100.00% 20.63%| 100.00% 20.66%| 100.00% 26.46%| 100.00% 46.25%| 100.00% 28.86% | 100.00% 25.74%
6 100.00% 100.00% | 100.00% 100.00%| 100.00% 100.00%| 100.00% 100.00%| 100.00% 100.00% | 100.00% 100.00%
7 100.00% 100.00% | 100.00% 100.00%| 100.00% 100.00%| 100.00% 100.00%| 100.00% 100.00% | 100.00% 100.00%
8 98.32% 93.42%| 98.30% 93.55%| 97.65% 94.68%| 98.27% 94.40%| 98.26% 96.43%| 98.23% 95.80%
9 6.25%  5.21%| 5.98% 5.22% 5.44% 5.19% 6.09%  5.18%| 5.61%  5.19% 5.50% 5.17%
10 91.84% 21.06%| 92.19% 18.11%| 87.01% 35.57%| 90.91% 22.56%| 87.72% 17.48%| 89.36% 15.51%
11 86.24% 80.43%| 86.09% 80.26%| 84.39% 80.51%| 84.69% 80.44%| 83.90% 77.51%| 83.00% 76.83%
12 99.37% 95.87%| 99.23% 95.71%| 99.27% 96.63%| 99.35% 96.69%| 99.24% 98.20%| 99.24% 97.89%
13 95.93% 93.21%| 95.91% 93.12%| 95.19% 93.48%| 95.88% 93.36%| 95.71% 94.01%| 95.66% 93.66%
14 99.98% 99.96%| 99.98% 99.97%| 99.98% 99.97%| 99.98% 99.96%| 99.98% 99.97%| 99.98% 99.97%
15 8.30%  5.37%| 5.77% 5.35% 6.29% 5.36%| 7.52%  5.35%| 5.98% 5.39% 5.94% 5.35%
16 91.97% 16.99%| 92.66% 14.31%| 89.15% 23.10%| 90.36% 18.16%| 91.35% 13.43%| 90.86% 12.46%
17 96.52% 95.46%| 96.51% 94.92%| 96.41% 96.14%| 96.50% 95.92%| 95.88% 91.53%| 95.98% 90.62%
18 94.69% 93.70%| 94.56% 93.73%| 94.61% 93.90%| 94.61% 93.70%| 94.42% 93.76%| 94.37% 93.78%
19 87.38% 24.10%| 87.37% 24.09%| 87.95% 23.39%| 85.71% 24.22%| 87.51% 25.13%| 86.55% 24.40%
20 95.56% 71.11%| 95.07% 69.11%| 94.95% 47.92%| 95.93% 60.51%| 90.34% 48.05%| 88.12% 46.87%
False Positive 5.00%  5.00%| 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%| 5.00% 5.00% 5.00% 5.00%
Average (TP) 82.86% 65.96%| 82.71% 65.55%| 82.10% 66.25%| 82.52% 66.97%| 82.01% 64.90%| 81.85% 64.36%

Other formulations

Developed a new self-supervised
formulation for model training with
demonstrated performance
improvement comparing with
autoregressive formulation

Developed a new approach to
leverage a small sample of faulty
cases along with normal operation
data, demonstrated improved
performance using TEP dataset with
as little as 3 cases per fault for
training
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Anomaly detection and interpretation by
learning variable dependency

effect
X1 X2 X3 X4
xn|0olo|1]o
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Inp ut p rediction univariate nonlinearity feature association nonlinearity
window window

Detection and Diagnosis of Anomaly with Variable Association Change (DAVAC)

:




Anomaly interpretation

Anomaly induced association change TEP data example
Fault 2: B Composition, A/C Ratio constant (step)
w00 Actual cause ]Fﬁture
800 WWWMM{WT‘1W : Ilm Diff for Faulty2
\ Univariate ranking methods usually 2
\ only return the most affected :
e M‘* Most affected feature features. var_9: Purge_rate s
W08 i S R AL
— The actual cause of anomaly can
be obtained from the association 05
learn change.
earning
change of _—
association & S
normal data detected anomaly
Ny TR TE T TR I R e s e~ L
ya y | / \I
: . FT 113 var_46: Purge_valve
| Gl e | S THIBE
| Lo [ I D = (] e ? |
f 1 r I |1 1 l I ‘I: l | l 012345678 910111213141516171819 2021222324 25262728 3031323334 353637 3839404142434445464748495051
= s E—_ — 1
— s e e e \ 7/ = =
var_29:
Composition_of_B_purge
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Process steps for plant data

Data tags and configuration

Ininput InTarget InControl SourceName

1 1 5-F-FDR-DMD
5-F-FDR-DSCH-PRS
5-F-FDR-RATE . .

. . 5-F-FOR5PD : Training data
5-F-MILL-AMP Data Loadi ng .
5-F-MILL-DP construction

1 1 5-F-MILL-INT-T

1 1 5-F-MILL-PA-1-F . . _

o EMILLPAF Time series Evgnts data

1 1 5-F-MILL-PA-T data define normal

1 1 5-F-MILL-T .

1 1 SF-FDR-SPD-BIAS operation

Data source
Input: all time series

measurements as input to model

Model training

Trained
model

Time series

Target: tags to predict
Control: command and actuation

measurements Performance
report

Performance
evaluation

data

Model running

13



Barry unit 5 plant data experiments

Experiment setup: 3 month for training; 13 months for evaluation

Use case

WET COAL (OMC) -FEEDER
STOPPAGE:

CONDENSER TUBE CLEANING
SYSTEMS INCLUDING DEBRIS FILTER:

CIRCULATING WATER PUMP MOTORS:

BOILER FEED WATER PUMP:

Data tags configuration

Ininput

Inlnput

Inlnput

1

e e e

PR R R R e e e

InTarget

InTarget

B R R R R R R e

InTarget

Performance evaluation

InControl SourceName

1 5-F-FDR-DMD

5-F-FDR-DSCH-PRS False Alarms False Alarms

5-F-FDR-RATE Detected /13 months /13 months
5-F-FDR-SPD System  Total Events Events (TP) (LSTM) (CNN)

5-F-MILL-AMP
S F-MILL-DP Mill A 4 48 50
29 34

39 46
22 27
10 8
14 22

5-F-MILL-INT-T Mill B
1 5-F-MILL-PA-1-F Mill C
5-F-MILL-PA-F -
1 5-F-MILL-PA-T Mill D
5-F-MILL-T Mill E
1 5F-FDR-SPD-BIAS Mill F

D~ OO OUN
AR, OO NS

InControl SourceName
5-DEBRIS-FLT-A-DP
5-A-CRC-WTR-PMP-MTR-AMP

5-A-CWP-MTR-LWG-BRG-T
False Alarms False Alarms
5-A-CWP-MTR-UPG-BRG-T

- A-CWP-MT-THR-BRG-T Detected /13 months /13 months
5-A-CWP-MTR-STAT-1-T System Total Events Events (TP) (LSTM™) (CNN)
5-A-CWP-MTR-STAT-2-T QNP A 4 4 5 n
5-A-CWP-MTR-STAT-3-T cwp B 4 4 3

InControl SourceName
5-DEA-LVL
5-A-BFP-BRG-OIL-P
1 5-A-BFP-DISC-P
5-A-BFP-DMD False Alarms False Alarms
N S-A-BERCE Detected /13 months /13 months

S-A-BERLIB-BRG System Total Events  Events (TP) CNN, balanced  CNN, unbal.
5-A-BFP-KPPH-F

5-A-BFP-OB-BRG |BFPA z z 2 17,
5-A-BFP-SEAL-WTR-T
1 5-A-BFP-SPD

=

Demonstrated Al learning system on initial plant use cases
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Next steps

* Study Al system with simulation data from GE Steam
Power

* Plant Barry Unit 5 data gathering for validation preparation
 Usability experiment with GE internal data

* Enhance Al framework maturity
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