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Historical data
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Physical measurement 
sequence samples

Trained AI models

Expected outcomes

• Achieve TRL 5 technology 
maturity of end-to-end 
trainable AI learning system 
for fault detection and root 
cause analysis

• Validate AI learning system 
with data from a coal-fired 
power plant

• Demonstrate advantages 
comparing with state-of-the-
art technologies

• Publicize anonymized training 
data 

Develop deep analysis net with causal embedding for coal-fired power plant fault detection 
and diagnosis (DANCE4CFDD), a novel end-to-end trainable artificial intelligence (AI)-based 
multivariate time series learning system for flexible and scalable coal power plant fault 
detection and root cause analysis



Project objectives
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Anticipated benefits:
• Applicability to a broad range of asset types and plant 

configurations for improving coal-fired power plant 
reliability

• High scalability—reduce development time by 
eliminating the need for manual and time-consuming 
domain expert feature engineering

Deep Causal Embedding Net
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Causality

Input
1D 
Temporal 
Conv 
Layer

DAG Learning 
Layer

Graph Coarsening 
Layer

Selection 
Layer Output

Multiple manual touch points for model update

Data source

Machine Learning 
model [Support 
Vector Machine, 
Random Forest, 
Neural Network]

Conventional data 
driven approach

Pre-processing

Retrainable with new 
data for model update

GE DANCE4CFDD AI 
Learning System

Hand crafted features 
[variance, mean, 

peaks, etc.]
Feature selection 

[PCA, ICA]

Motivation: Existing asset health management 
solutions have limited adaptability. Therefore, there is a 
critical need for a well-designed end-to-end solution 
that is applicable to a wide range of applications by 
leveraging large amounts of historical normal operation 
data from existing coal plants.

Technology Innovation: a novel end-to-end trainable 
artificial intelligence (AI)-based multivariate time series 
learning system for flexible and scalable coal power 
plant fault detection and root cause analysis.



Progress summary 

• Streamlined AI anomaly detection – end to end trainable 

• Approach for few faulty case learning: how to effectively 
leverage a small sample of faulty data 

• Anomaly interpretation for diagnosis 

• Application to a range of plant use cases

5



Current state of DANCE4CFDD system

6

Core model libraries

Supporting functions: 
- Time series data construction for training and testing
- Performance evaluation functions
- Other utility functions 

Carry research studies: 
- Simulation data study
- Plant data study
- Secure Water Treatment (SWaT) dataset
- Tennessee Eastman Process (TEP) benchmark dataset



Research focus
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• Unsupervised learning: only 
normal operation data is used

• Supervised learning: both normal 
operation data and faulty data are 
available
• Few faulty case learning: 

normal operation data with a 
small sample of faulty data 

• Majority of data is under 
normal operation, only small 
number of faulty events to 
learn from

Industry needs Approaches



Datasets

• Two public datasets: 
- Secure Water Treatment 

(SWaT) testbed dataset*

- Tennessee Eastman 
Process (TEP) dataset ^

• Southern Plant Barry Unit 5 
data

* https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
^ https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
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• 7 days of normal operation
• 4 days of 41 episodes of attack
• 36 attacks are physical, treated as faults
• 1/second sampling
• 24 sensor + 27 actuator tags 

• Simulation data
• 41 sensor + 11 actuator tags
• 20 faults  

• 16 months, 3994 tags, 1/min time 
series data 

• NERC GADS report data (reliability 
events)

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1


Brief on TEP dataset 
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Table 2
Measured (output) variables of the TE process. The sampling interval is 3 min.

Variable Description Variable Description

XMEAS(1) A feed (stream 1) XMEAS(22) Condenser cooling water outlet temp
XMEAS(2) D feed (stream 2) XMEAS(23) Composition of A (stream 6)
XMEAS(3) E feed (stream 3) XMEAS(24) Composition of B (stream 6)
XMEAS(4) Total feed (stream 4) XMEAS(25) Composition of C (stream 6)
XMEAS(5) Recycle flow (stream 8) XMEAS(26) Composition of D (stream 6)
XMEAS(6) Reactor feed rate (stream 6) XMEAS(27) Composition of E (stream 6)
XMEAS(7) Reactor pressure XMEAS(28) Composition of F (stream 6)
XMEAS(8) Reactor level XMEAS(29) Composition of A (stream 9)
XMEAS(9) Reactor temp XMEAS(30) Composition of B (stream 9)
XMEAS(10) Purge rate (stream 9) XMEAS(31) Composition of C (stream 9)
XMEAS(11) Separator temp XMEAS(32) Composition of D (stream 9)
XMEAS(12) Separator level XMEAS(33) Composition of E (stream 9)
XMEAS(13) Separator pressure XMEAS(34) Composition of F (stream 9)
XMEAS(14) Separator underflow (stream 10) XMEAS(35) Composition of G (stream 9)
XMEAS(15) Stripper level XMEAS(36) Composition of H (stream 9)
XMEAS(16) Stripper pressure XMEAS(37) Composition of D (stream 11)
XMEAS(17) Stripper underflow (stream 11) XMEAS(38) Composition of E (stream 11)
XMEAS(18) Stripper temperature XMEAS(39) Composition of F (stream 11)
XMEAS(19) Stripper steam flow XMEAS(40) Composition of G (stream 11)
XMEAS(20) Compressor work XMEAS(41) Composition of H (stream 11)
XMEAS(21) Reactor cooling water outlet temp

Table 3
Faults defined in the TE process (Downs and Vogel, 1993). The sampling interval is 3 min. The fault magnitudes are obtained by comparing the fault and normal data.

Fault ID Description Type Magnitude

IDV1 A/C Feed ratio, B Composition constant (stream 4) Step 203%
IDV2  B Composition, A/C Ratio constant (stream 4) Step 105%
IDV3  D Feed temperature (stream 2) Step 5%
IDV4  Reactor cooling water inlet temperature Step 9%
IDV5  Condenser cooling water inlet temperature Step 15%
IDV6  A Feed loss (stream 1) Step 342%
IDV7  C Header pressure loss – reduced availability (Stream 4) Step 25%
IDV8  A, B, C Feed composition (stream 4) Random variation 736%
IDV9  D Feed temperature (stream 2) Random variation 8%
IDV10 C Feed temperature (stream 4) Random variation 112%
IDV11 Reactor cooling water inlet temperature Random variation 567%
IDV12 Condenser cooling water inlet temperature Random variation 8%
IDV13 Reaction kinetics Slow drift 16%
IDV14 Reactor cooling water valve Sticking 1285%
IDV15 Condenser cooling water valve Sticking 5%
IDV16 Unknown Random variation 78%
IDV17 Unknown Random variation 557%
IDV18 Unknown Step 57%
IDV19 Unknown Random variation 73%
IDV20 Unknown Random variation 310%

We  generate 3000 time steps for normal signal and each fault
signal, respectively, and employ a sliding window (size 500) to gen-
erate a series of signal segments, which are employed to train the
deterministic reservoir model.

The fault detection ability is measured by fault detection rate
(FDR) and false alarm rate (FAR). In fault isolation, the performance
is measured by precision, recall (or sensitivity), and specificity.  The
precision, recall and specificity are defined as follows:

precision = tp
tp + fp

,

recall = tp
tp + fn

,

specificity = tn
tn + fp

,

where tp,  tn,  fp,  fn indicate true positive, true negative, false pos-
itive, false negative, respectively. Their definitions are detailed as
follow:

• true positive tp:  fault signal correctly diagnosed as fault.
• true negative tn:  normal signal correctly diagnosed as normal.

• false positive fp: fault signal incorrectly identified as normal.
• false negative fn:  normal signal incorrectly identified as fault.

Based on these definitions, the fault detection (FD) rate is
defined as FD = (tp/tp + tn + fp + fn).  The false alarm rate (FAR) is
defined as FD = (fn/tp + tn + fp + fn).

Precision measures the proportion of positive test results that
are true positives, also referred to as positive predictive value.
Recall measures the proportion of actual faults which are correctly

Table 4
Algorithms and parameters in supervised setting

Algorithm Parameters

CART –
NaiveBayes –
Bagging Number of trees: 100
Boosting Number of trees: 100
SVM ! Gaussian kernel parameter

C  Soft margin parameter
OCS ! Gaussian kernel parameter

"  The upper bound of outliers

Source: H. Chen, P. Tino, X. Yao, Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space, Computers and Chemical 
Engineering (67), 2014. 
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Study summary 

10

Fault
MD MSE MD MSE MD MSE MD MSE MD MSE MD MSE

1 99.96% 99.74% 99.97% 99.73% 99.86% 99.61% 99.96% 99.72% 99.93% 99.64% 99.92% 99.66%
2 99.09% 97.99% 99.05% 97.98% 98.55% 97.93% 99.02% 97.96% 99.00% 98.45% 98.94% 98.40%
3 5.77% 5.12% 5.65% 5.15% 5.32% 5.12% 5.69% 5.08% 5.38% 5.00% 5.25% 5.03%
4 100.00% 99.95% 100.00% 99.96% 100.00% 100.00% 100.00% 99.96% 100.00% 99.96% 100.00% 99.99%
5 100.00% 20.63% 100.00% 20.66% 100.00% 26.46% 100.00% 46.25% 100.00% 28.86% 100.00% 25.74%
6 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
7 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
8 98.32% 93.42% 98.30% 93.55% 97.65% 94.68% 98.27% 94.40% 98.26% 96.43% 98.23% 95.80%
9 6.25% 5.21% 5.98% 5.22% 5.44% 5.19% 6.09% 5.18% 5.61% 5.19% 5.50% 5.17%

10 91.84% 21.06% 92.19% 18.11% 87.01% 35.57% 90.91% 22.56% 87.72% 17.48% 89.36% 15.51%
11 86.24% 80.43% 86.09% 80.26% 84.39% 80.51% 84.69% 80.44% 83.90% 77.51% 83.00% 76.83%
12 99.37% 95.87% 99.23% 95.71% 99.27% 96.63% 99.35% 96.69% 99.24% 98.20% 99.24% 97.89%
13 95.93% 93.21% 95.91% 93.12% 95.19% 93.48% 95.88% 93.36% 95.71% 94.01% 95.66% 93.66%
14 99.98% 99.96% 99.98% 99.97% 99.98% 99.97% 99.98% 99.96% 99.98% 99.97% 99.98% 99.97%
15 8.30% 5.37% 5.77% 5.35% 6.29% 5.36% 7.52% 5.35% 5.98% 5.39% 5.94% 5.35%
16 91.97% 16.99% 92.66% 14.31% 89.15% 23.10% 90.36% 18.16% 91.35% 13.43% 90.86% 12.46%
17 96.52% 95.46% 96.51% 94.92% 96.41% 96.14% 96.50% 95.92% 95.88% 91.53% 95.98% 90.62%
18 94.69% 93.70% 94.56% 93.73% 94.61% 93.90% 94.61% 93.70% 94.42% 93.76% 94.37% 93.78%
19 87.38% 24.10% 87.37% 24.09% 87.95% 23.39% 85.71% 24.22% 87.51% 25.13% 86.55% 24.40%
20 95.56% 71.11% 95.07% 69.11% 94.95% 47.92% 95.93% 60.51% 90.34% 48.05% 88.12% 46.87%

False Positive 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%
Average (TP) 82.86% 65.96% 82.71% 65.55% 82.10% 66.25% 82.52% 66.97% 82.01% 64.90% 81.85% 64.36%

LSTM Bidirectional-LSTM TCN Attention LSTM Transformer Transformer 

𝑥!"# 𝑥!"$ 𝑥!𝑥!"% …

"𝑥!𝑓(𝑥!")

𝜀! = 𝑥! − "𝑥!
MSE (Mean Square Error)

MD (Mahalanobis Distance)

Autoregressive formulation Other formulations

• Developed a new self-supervised 
formulation for model training with 
demonstrated performance 
improvement comparing with 
autoregressive formulation 

• Developed a new approach to 
leverage a small sample of faulty 
cases along with normal operation 
data, demonstrated improved 
performance using TEP dataset with 
as little as 3 cases per fault for 
training 



Anomaly detection and interpretation by 
learning variable dependency
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Anomaly interpretation
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Univariate ranking methods usually
only return the most affected
features.

The actual cause of anomaly can 
be obtained from the association
change.

Anomaly induced association change TEP data example

Fault 2: B Composition, A/C Ratio constant (step)

var_9: Purge_rate

var_46: Purge_valve

var_29: 
Composition_of_B_purge



Process steps for plant data
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Data tags and configuration

Data Loading Training data 
construction

Data source

Events data –
define normal 

operation

Model training

Model running

Time series 
data

Trained 
model

Performance 
evaluation

Performance 
report

InInput InTarget InControl SourceName
1 1 5-F-FDR-DMD

5-F-FDR-DSCH-PRS
5-F-FDR-RATE

1 1 5-F-FDR-SPD
5-F-MILL-AMP
5-F-MILL-DP

1 1 5-F-MILL-INT-T
1 1 5-F-MILL-PA-1-F

5-F-MILL-PA-F
1 1 5-F-MILL-PA-T
1 1 5-F-MILL-T
1 1 5F-FDR-SPD-BIAS

Time series 
data

Input: all time series 
measurements as input to model
Target: tags to predict
Control: command and actuation 
measurements 



Barry unit 5 plant data experiments
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Experiment setup: 3 month for training; 13 months for evaluation

System Total Events
Detected 

Events (TP)

False Alarms 
/ 13 months  

(LSTM)

False Alarms 
/ 13 months 

(CNN)
Mill A 4 4 48 50
Mill B 2 2 29 34
Mill C 9 9 39 46
Mill D 6 6 22 27
Mill E 1 1 10 8
Mill F 6 6 14 22

WET COAL (OMC) –FEEDER 
STOPPAGE: 

CONDENSER TUBE CLEANING 
SYSTEMS INCLUDING DEBRIS FILTER: 

CIRCULATING WATER PUMP MOTORS: 

InInput InTarget InControl SourceName
1 1 5-F-FDR-DMD

5-F-FDR-DSCH-PRS
5-F-FDR-RATE

1 1 5-F-FDR-SPD
5-F-MILL-AMP
5-F-MILL-DP

1 1 5-F-MILL-INT-T
1 1 5-F-MILL-PA-1-F

5-F-MILL-PA-F
1 1 5-F-MILL-PA-T
1 1 5-F-MILL-T
1 1 5F-FDR-SPD-BIAS

Data tags configuration Performance evaluation

System Total Events
Detected 

Events (TP)

False Alarms 
/ 13 months  

(LSTM)

False Alarms 
/ 13 months 

(CNN)
CWP A 4 4 5 11
CWP B 4 4 3 4

InInput InTarget InControl SourceName
1 1 5-DEBRIS-FLT-A-DP
1 1 5-A-CRC-WTR-PMP-MTR-AMP
1 1 5-A-CWP-MTR-LWG-BRG-T
1 1 5-A-CWP-MTR-UPG-BRG-T
1 1 5-A-CWP-MT-THR-BRG-T
1 1 5-A-CWP-MTR-STAT-1-T
1 1 5-A-CWP-MTR-STAT-2-T
1 1 5-A-CWP-MTR-STAT-3-T

Use case

Demonstrated AI learning system on initial plant use cases

BOILER FEED WATER PUMP:



Next steps

• Study AI system with simulation data from GE Steam 
Power

• Plant Barry Unit 5 data gathering for validation preparation

•Usability experiment with GE internal data

• Enhance AI framework maturity
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Q & A
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