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TECHNICAL BACKGROUND & MOTIVATION
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Quantum Information Processing (QIP) and Quantum Bits (qubits)

DiVincenzo criteria
1. Long coherence time

2. Efficient initialization

3. Scalable

4. Readout

5. Universal quantum gates

Progress of Physics 48, (2000) 771-783.

Physical Implementation of Qubits
• Atoms, ions, molecules 
• Electronic and nuclear magnetic moments
• Charges in semiconductor quantum dots 
• Charges and fluxes in superconducting 

circuits 
• Spin

Nature Physics 3, (2007) 192-196.

https://www.bbvaopenmind.com/en/technology/digital-world/towards-the-
quantum-computer-qubits-and-qudits/

https://physicsworld.com/a/quantum-communications-boosted-by-
solid-memory-devices/
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Advantages of Graphene:
1. Very low nuclear spin 

2. Weak spin-orbit coupling

S-O coupling

Decoherence

GQDs for Spin Qubits

Nature Physics 3, (2007) 192-196.

Coherence time  depends on spin-orbit and hyperfine interactions in the material
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▪ Fabrication residues

▪ Substrate defects

▪ Edge effects (disorder)

Quantum Dots in Graphene

ACS Nano 13, (2019) 7502-7507.

30 nm wide , 60 nm 
long GNR 

50 nm wide, 60 nm 
long GNR 
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Objective 1: Define GQDs on GNR with ultralow local defects

Objective 2: Low-temperature characterization of quantum transport and spin relaxation times in GQDs

Objective 3: Develop double GQD-based qubit platform and characterize coupling effects

Fabrication & 

Characterization of 

double GQD devices

Performance 

evaluation of single 

GQD devices

Define GQDs in 

GNRs with 

smooth edges

• Spin transport in double dot

• Interdot coupling studies

(tunable tunnel barriers)

• GQD single electron transport 

• Quantum point contact detector

• Charge relaxation studies

Nanotomy & SPM-AOL

GQD quality evaluation

(SPM, Raman, TEM, Etc.)

YR 1 YR 2 YR 3

Outline of the overall effort of the proposed project

Project Objectives
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CURRENT PROGRESS AND RESULTS
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Synthesis of GNRS and Characterization

Unzipping of Carbon Nanotubes (CNTs)

MWCNTS/SWCNTS
KMnO4

75⁰C, 2h

MWCNTS/SWCNTS
(NH4)2S2O8

80⁰C, 24h

2 steps, oxidation and reduction

MWCNTS/SWCNTS
Electrochemical Unzipping

▪ Unzipping  of CNTs produces semiconducting GNRs

Nature 458, (2009) 872–876. Carbon 158, (2020) 615-623.

Journal of the American Chemical Society 133, (2011) 4168-4171.

Macromolecular Chemistry and Physics 213, (2012) 1033-1050.
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Raman Spectroscopic Investigation of Unzipped MWCNTs
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D peak

G peak
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ID/IG = 0.14

ID/IG = 0.6

ID/IG = 1.029

ID/IG = 0.55

Sample ID/IG LD 

(nm)

nD x 10 11 (cm-2)

MWCNT 0.14 32.09 0.31

UMWCNT-KMnO4 1.03 11.84 2.31

UMWCNT-(NH4)2S2O8 0.60 15.50 1.35

EC-UMWCNT 0.55 16.19 1.23
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Scanning Electron Microscopy (SEM) Results 
Unzipped MWCNTs

KMnO4 Ammonium persulfate 
Pristine MWCNT
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770 nm

Completely Unzipped MWCNTs by KMnO4 with Different Width
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Transmission Electron Microscopy (TEM) Results 
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Transmission Electron Microscopy (TEM): Edge Roughness



Functional Quantum Materials Laboratory 14

Transmission Electron Microscopy (TEM) Results 

Unzipping of MWCNT by (NH4)2S2O8
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AFM Topography Analysis

MWCNT KMnO4 Unzipped MWCNT

2 µm2 µm 0.5 µm



Raman Spectroscopic and SEM Investigation of Unzipped SWCNTs

Functional Quantum Materials Laboratory

Unzipped SWCNTs
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Electrochemical Estimation of Bandgap: Cyclic Voltammetry (CV) 
▪ CV results indicates the unzipped CNTs are semiconducting in nature
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E1/2(ferrocene) = 0.31 V, according to the equations 
EHOMO = -[Eox – E1/ 2(ferrocene) + 4.8]eV and 
ELUMO = -[Ered – E1/2(ferrocene) + 4.8]eV

UMWCNT-KMnO4 :

E LUMO = -3.14 eV , EHOMO = -5.422 eV Bandgap (Eg) = 2.282 eV

UMWCNT- (NH4)2S2O8:  

ELUMO = -4.985 eV , EHOMO = -5.748 eV, Bandgap (Eg) = 0.763 eV
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Electrochemical Estimation of Bandgap

▪ Electrical transport characteristics are dependent on bandgap.

Sample Unzipping method Bandgap (eV)

MWCNT N/A 1.53

SWCNT N/A 0.69

UMWCNT

KMnO4 2.28

(NH4)2S2O8 1.65

Electrochemical 1.02

USWCNT

KMnO4 0.59

(NH4)2S2O8 0.81 

Electrochemical 0.79
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Topography Surface Potential

Calculation of Surface Potential and Fermi Level Using SKPFM
KMnO4-UMWCNT

0.5 µm0.5 µm 0.5 µm
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(NH4)2S2O8 UMWCNT 

Calculation of Surface Potential and Fermi Level Using SKPFM

Topography Surface Potential

0.5 µm2 µm
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Conductivity Evaluation of Unzipped CNTs Using Electrochemical 
Impedance spectroscopy (EIS)
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❑ As received SWCNT and MWCNTs are semiconducting. SWCNT is found to be more conducting compared to MWCNT. 
❑ Same trend holds even after unzipping using (NH4)2SO8 and KMnO4

❑ Unzipping MWCNT/SWCNT using (NH4)2SO8 appears to produces more conducting unzipped CNTs compared to KMnO4 

unzipping. Agrees well with Raman results.
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Two zone CVD furnace Integrated setup for SPM and Raman 
characterization 

G peakRaman spectrum 2D map

CVD Graphene Growth and Characterization

100nm 100nm

2D Height map 2D KPFM map
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SUMMARY OF CURRENT PROGRESS

1. Initiated synthesis of GNRs using chemical/electrochemical unzipping of  MWCNT/SWCNT

2. Characterized unzipped CNTs using different microscopic, spectroscopic and electrochemical techniques

3. Successfully prepared GNRs with different widths using KMnO4 oxidation assisted unzipping of CNTs. 

4. Chemical unzipping using ammonium per sulfate require further microscopic/spectroscopic studies to 

optimize the oxidation process conditions for producing better quality GNRs.

5. KPFM and c-AFM characterization of unzipped CNTs are currently under progress

6. Scanning probe lithography trials are in the early stage. 
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PROJECT SCHEDULE & MILESTONES
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PROJECT SCHEDULE
Yr1 Yr2 Yr3

S. No. Task Title 1 2 3 4 1 2 3 4 1 2 3 4

1 Project Management and Planning 

2

Preparation of GNRs with prescribed width and 

smooth edges

 

3

Device fabrication and characterization of a single-

electron transistor

  

4

Characterization of GQD charge stability and charge 

relaxation

  

5

Fabrication and Characterization of double GQD 

spin qubit system



6 Final Verification 

-Milestones -Go/No-Go Decision points
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FUTURE WORK
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Proposed GQD-based SET and QPC Device Structure

2. Characterization of SET

Appl. Phys. Lett. 92, 012102 (2008)

1. Electrical transport studies on GNR devices
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3. Characterization of SET using QPC

4. Characterization of Double Quantum Dots

Nature communications volume 4, 1753 (2013)

https://www.nature.com/articles/srep03175#Fig5
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Exclusively from the project

1. Aruna N. Nair, Venkata S.N. Chava, and Sreeprasad T. Sreenivasan, “A combined microscopic, spectroscopic, and 

electrochemical investigation of graphene nanoribbons prepared by unzipping CNTs: Edges, Doping, and Band Structure 

Analysis”. (Manuscript under preparation for J. Phys. Chem. Lett.).
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Thank You!


