RESEARCH & DEVELOPMENT

Wireless Temperature Sensor for Rotating Turbine Blades

STTR Phase I Grant DE-SC0020908

Phase I Final Results Meeting May 12, 2021

Creare LLC, Hanover, NH Daniel Micka (djm@creare.com) Gregory Daines University of Central Florida Prof. Kareem Ahmed Prof. Xun Gong Prof. Seetha Raghavan Dr. Quentin Fouliard

20 YEAR SBIR/STTR DATA RIGHTS (2019)

Funding Agreement No. DE-SC0020908 Award Date: July 29, 2020 SBIR/STTR Protection Period: July 29, 2040 SBIR/STTR Awardee: Creare LLC, 16 Great Hollow Road, Hanover, NH 03755

This report contains SBIR/STTR Data to which the Federal Government has received SBIR/STTR Technical Data Rights or SBIR/STTR Computer Software Rights during the SBIR/STTR Protection Period and Unlimited Rights afterwards, as defined in the Funding Agreement. Any reproductions of SBIR/STTR Data must include this legend.

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 2

Outline

- Wireless Temperature Sensor Overview
- Phase I Overview
- Sensor Head Design and Fabrication
- Sensor Testing
- Turbine Engine Integration Plan
- Conclusions

Wireless Sensor Overview

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 4

Need for Turbine Temperature Sensor

- Natural gas turbines are largest source of electricity in the US
 - Projected to remain #1 for the next
 2 decades+
- The turbine metal temperature limits the machine efficiency and durability
 - Measurement of turbine temperature would allow optimized operation for higher efficiency and/or lower maintenance
- Existing measurement of rotating turbine blade temperature
 - Infrared thermometry: Requires optical access and is impacted by emissivity variation
 - Phosphor thermometry: Newer technique optical access required, signal weakening at high temperatures

EIA US Electricity Generation Forecast

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 5

UCF/Creare Turbine Temperature Concept

- Passive sensor head (patch antenna) attached to turbine blade
- High temperature sensor head is an antenna with a resonant frequency that is temperature dependent
- Temperature is measured by RF transceiver mounted in the turbine case

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 6

Wireless Sensor Head

- Layers of conductors separated by dielectric
- Material properties of dielectric are key
 - Low dielectric loss
 - » Required for high quality factor
 - » Increases signal peak, sensing distance, and accuracy
 - Dielectric constant
 - » Must vary with temperature
 - » Higher value allows smaller sensor for same operating frequency
- Patch antenna size based on dielectric properties and desired operating frequency

$$f_r = \frac{c_0}{2L_{eff}\sqrt{\varepsilon_{eff}}}$$

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 7

Previous Related Work at UCF

Wireless Temperature Sensor

- Prof. Xun Gong of UCF developed and tested a wireless temperature sensor based on patch antenna
- Basis for current work needs further development for gas turbine application

Cheng et al. 2015a, <u>http://dx.doi.org/10.1016/j.sna.2014.11.010</u>

Novel High Temperature Materials

- UCF has developed novel polymer derived ceramic materials with desirable properties for the sensor dielectric: SiBCN, SiCN
- Excellent stability in high temperature combustion products
- Low dielectric loss
- Dielectric constant varies with temperature
- Microfabrication capability

Cheng et al. 2015b, <u>http://dx.doi.org/10.1109/JMEMS.2016.2642580</u>

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 8

Integration with a Gas Turbine Engine

- Wireless sensor head
 - Must be integrated with TBC coated turbine blade
 - Materials, size, manufacturing considerations
- Stationary antenna mounted in case
 - High temperature materials
- Drive and read electronics
 - Remote located in benign environment
 - Short time to read each passing blade (order 100 µs)
 - Distance to sensor, 10-100 mm
 - Need high energy RF pulse

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 9

Phase I Overview

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 10

Project Team

- Creare
 - Dr. Danny Micka, Principal Investigator
 - Greg Daines, Project Engineer
- University of Central Florida
 - Prof. Kareem Ahmed, UCF Lead and High Temperature Testing
 - Prof. Xun Gong, RF and Electronics Design and Testing
 - Prof. Seetha Raghavan, High Temperature Materials
 - Dr. Quentin Fouliard, High Temperature Materials
- Industrial Collaborator (Unfunded)
 - General Electric, Dr. Keith McManus

Phase I Technical Objectives

- Overall Objective: Development and commercialization of an accurate, durable temperature sensor for rotating turbine blades
- Phase I: Prove feasibility of sensor concept for gas turbine engines
 - Design and build sensor head for turbine blade application
 - Build and test prototype sensor head
 - Conceptual design of a turbine engine integrated sensor system
- Key Questions to Address in Phase I
 - Sensor head size and materials
 - Sensor head integration with turbine blade
 - Sensor performance
 - System integration challenges

Schedule and Budget

- DoE Phase I STTR
- Nominal 9 month schedule
 - PoP ended March 2021

	.	‡ <mark>¦ €</mark>	∍⊳	Activity Name	2020				2021				
	÷F				Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr
1			$\overline{\mathbf{v}}$	Task 1. Sensor Design	>				~				
2				Task 1A. Materials Characterization		~		V					
3				Task 1B. Final Phase I Sensor Design					~				
4			L II	Task 2. Fabrication of Final Phase I Sensor Prototypes					~		~ >		
5				Task 3. Testing of Final Phase I Sensor Prototypes							• • • • • • • • • • • • • • • • • • •		Þ
6			L II	Task 4. Conceptual Design of Engine Integrated Sensor System						~			¢
7													
8				Final Report Due									٠

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 13

Overall Summary

- We focused on the development of the wireless sensor head in Phase I
- We designed built and tested several prototypes with different materials
- Some promising results, but experimental and schedule difficulties have slowed some key data
 - We requested and received permission to submit a Phase II proposal in 2022
- Temperature sensing performance
 - Measured good temperature response up to the maximum temperature measured (800 °C) with alumina sensor
 - Have not yet been able to test at higher temperatures due to experimental difficulties
- Sensing distance
 - Up to 63 mm measured with high temperature sensor
 - Sufficient for turbine engine application
- Turbine engine integration
 - Conceptual design for buried sensor for long term durability
 - Requires verification of YSZ dielectric properties at high temperature (pending)

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 14

Sensor Head Design and Fabrication

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 15

Materials Selection: Sensor Head

Dielectric

- Requirements: dielectric properties, high temperature capability, turbine blade compatibility
- SiBCN
 - » Great high temperature and dielectric properties demonstrated in previous laboratory studies
 - » Unique fabrication required Fabrication not feasible for Phase I sensor
- Al_2O_3
 - » Good high temperature and dielectric properties, widely available
 - » Issues with long term chemical compatibility with high temperature combustion products
 - » We built and tested several prototypes
- YSZ
 - » Existing material on turbine engine integration simplified
 - » Dielectric properties uncertain
 - » We built and tested several prototypes

Conductor

- Requirements: Electrical conductivity, high temperature capability, turbine blade compatibility
- Platinum
 - » Very high melting temperature and good oxidation resistance at temperature
- NiCrAlY
 - » Existing material on turbine engine integration simplified

 $f_r = \frac{c_0}{2L_{eff}\sqrt{\varepsilon_{eff}}}$

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 16

Phase I Prototypes

Table 1. Alumina (Al2O3) Based Sensors Built in Phase I							
Sensor Series	Description	Dielectric	Substrate/Ground Plane	Patch Antenna			
A0	Low Temperature Pathfinder on	Thermal Sprayed Alumina	Aluminum	Silver Paste / Copper Tape			
A1	Aluminum Substrate	Thermal Sprayed Alumina	Aluminum with NiCrAIY Bond Coat	Silver Paste / Copper Tape			
A2	High Temperature Sensors	Thermal Sprayed Alumina	Inconel 718 with NiCrAIY Bond Coat	NiCrAlY			
A3	High Temperature Sensors	Prefabricated Alumina Substrate	Platinum Foil	Platinum Foil			

Table 2. YSZ Based Sensors Built in Phase I							
Sensor Series	Description	Dielectric	Substrate/Ground Plane	Patch Antenna			
Y0	Low Temperature	Thermal Sprayed YSZ	Aluminum	Silver Paste / Copper Tape			
Y1	Pathfinder on Aluminum Substrate	Thermal Sprayed YSZ	Aluminum with NiCrAIY Bond Coat	Silver Paste / Copper Tape			
Y2	High Temperature Sensors	Thermal Sprayed YSZ	Hastelloy with NiCrAlY Bond Coat	Platinum Paste			
YER	High Temperature Sensors	Thermal Sprayed YSZ with Rare Earth Doping	Hastelloy with NiCrAlY Bond Coat	Platinum Paste			

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 17

Typical Sensor Head Fabrication

Greare

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 18

Reaction Bonded Sensor

 Reaction bonded alumina / platinum sensor (A3) developed for consistent materials and high temperature bond

Size

- 6.35 x 6.36 x 0.5 mm alumina wafer
- 3.5 x 4.0 x 0.025 mm platinum foil
- Bonding at 1150 °C and 2 MPa

SBIR/STTR Protected Data

Creare LLC Copyright © 2021 An unpublished work. All rights reserved.

MTG-21-05-7907 / 1010326 - 19

Sensor Testing

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 20

Sensing Distance

- Commercial Network Analyzer (Agilent N5230A) and COTS Antenna were used to probe sensor response over critical frequency range
- Key measurement is sensor resonant frequency
- Sensing distance measurements at ambient temperature
 - Successful measurement at ~60 mm with A2 and A3 sensors

Wireless Sensor

Low Loss Dielectric Sensor Measurement up to 300 mm

Alumina Sensor (A2) Measurement Successful at 63 mm

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 21

Low Temperature Hot Plate Testing

- Alumina Sensor (A3) Performs well
 - **10 C change in temperature clearly** distinguished
 - Sensitivity ~1.4 MHz/°C
- YSZ sensor also works
 - **Demonstrates appropriate** dielectric properties (at temperatures measured)
 - Sensitivity ~ 1/3 of alumina sensor

11.5

Frequency (GHz)

11

SBIR/STTR Protected Data

-34

MTG-21-05-7907 / 1010326 - 22

Creare LLC Copyright © 2021 An unpublished work. All rights reserved.

12.5

12

Alumina Sensor (A3)

High Temperature Heating Pad Testing

- Only A3 tested due to size constraints
- Max temperature of pad is 800 °C
- Sensor performs well up to
 maximum temperature measured
- Don't have a good secondary measurement of sensor dielectric

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 23

High Temperature Oven Testingc

- Attempted measurements up to 1000 °C in a high temperature oven
- Measurements failed, sensor resonant frequency cannot be reliably detected
 - Possible that reflections from metal walls cause issue with the measurement
 - Requires further investigation

A2 Sensor Mounted in Oven

Horn Interrogation Antenna

Measurement Through Ceramic Oven Door

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 24

Turbine Engine Integration Plan

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 25

Sensor Head Integration with Turbine Blade

- Key is long term durability (up to 24,000 hrs) and integration with existing blade materials and manufacturing
- We plan a buried sensor head (located under YSZ) for long term durability
 - Alumina and platinum both compatible with YSZ top coat
- Place in area with no cooling holes

Clarke 2012 https://doi.org/10.1557/mrs.2012.232

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 26

System Integration Concept

- Stationary interrogation antenna
 - Mounted on the case inner diameter or outer diameter of nozzle guide vane ring
 - Nominally made of same materials as the sensor head
- Remote electronics
 - Custom version of commercial network analyzer located outside engine in benign environment
 - High pulsed RF source for good signal to noise ratio with short measurement time on rotating blade
- Sensor heads
 - Single sensor head per blade
 - 2-10 sensors per engine

Interrogation Antenna Option 2 Mounted on Outer Diameter Nozzle Guide Vane Ring

SBIR/STTR Protected Data MTG-21-05-7907 / 1010326 - 27

Conclusions

SBIR/STTR Protected Data

MTG-21-05-7907 / 1010326 - 28

Conclusions

- Wireless temperature sensor has been proven to work with a variety of materials
- For the turbine engine application, we plan a buried sensor head for long life
- The high temperature sensor head can be made by reaction bonding platinum foil to an alumina substrate
- YSZ has appropriate dielectric properties for a top coat (or sensor dielectric) at low temperatures (up to 300 °C). Further testing is required to verify these properties at high temperatures.
- Additional work needed:
 - Measurements of sensor operating at highest temperature needed for gas turbine application
 - Quantify temperature sensitivity / accuracy at high temperatures

