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Why single crystal fibers in FE sensing?
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 Why optical fiber?
1. No electrical interference
2. Medium temperature 

(~800c)
3. Single Feedthrough
4. Inexpensive
5. Easily functionalized
6. Distributed!

 Single crystal fiber
1. High melting point (sapphire: 

2054°C)
2. Corrosion resistant
3. Compact size (100 microns)
4. Wide transmission window
5. Benefits of silica ++



• Increase data-visibility for energy-system operators through high-value 
distributed measurements (replacing single-point)
• “Toughest environments provide the highest value”
• Enable predictive capabilities through data-analytics and AI/ML

• Methods: Produce novel single-crystal fibers for harsh-environment sensor 
applications

• Design Novel fiber-optic interrogators that work with SC-fiber

• Add – novel parameters like gas composition, flow, radiation, or others

• Market – complete sensor solutions for specific applications/customers

• Control processes for efficiency ($$, fuel, CO2), Predict failures for 
maintenance

Research Breakdown

5/10/2021 3



• Advanced Sensors Supporting Tasks:
• 21: Optical fiber Oxygen Sensor material development
• 24: Single-crystal fiber substrate and Cladding development
• 33: Raman distributed optical fiber temperature sensing interrogator development

• Work for others support:
• ARPA-e “Molten salt loop development acceleration using single crystal distributed 

optical fiber sensors ($2M, 2 years)
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Research Breakdown



Making Single-crystal fiber with LHPG
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• CO2 laser source for heating
• “Doughnut” beam shaper

surrounds molten zone with light
• Motors advance feedstock 

(pedestal) and fiber
• Slow process (mm/min)
• Grows purse crystals (no 

cladding)

125 µm 
Fiber

Melting 
pool

Pedestal
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NETL LHPG Capabilities and features

Some NETL LHPG stats: 
• Minimum diameter variation <2um
• Minimum fiber diameter <55um
• 50W laser power available (<1.5mm pedestals)
• Automatic fiber centering (+/-2mm)
• Continuous growth of any length with start/stop algorithm
• Error Erasing Algorithm



Experimental SC fiber Cladding
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• Grow cladded fibers with 2-stage LHPG
• Sapphire or YAG
• Sol-gel (or other) dopant additions

• Evaluate materials compatibility in FE (or nuclear) systems

• Improve fiber performance

Grow pure 
fibers in YAG, 
Sapphire, etc.  

(LHPG #1)

Prepare sol-
gel-based 
dopants

Coat pure 
fibers via dip-

coating

Re-grow 
coated fibers 

(LHPG #2)

TEST clad fibers 
in application 
environment



Cladding Application
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Dopant species Host crystal

Cr (chromium) Sapphire

Nd (neodymium) YAG

Ho (holmium) YAG

Er (erbium) YAG

Yb (ytterbium) YAG

Ce (cerium) YAG/ LuAG

Gd (gadolinium) YAG/ LuAG

Dopant Species Made to Date:

0.75

0.95

1.15

1.35

1.55

1.75

1.95

0 5 10 15 20 25 30

Holmium

Neodymium

0.75

0.95

1.15

1.35

1.55

1.75

1.95

0 5 10 15 20 25 30

Holmium

Neodymium

Automatic Dopant Segregation through LHPG: Top left: 
Visible light guiding in GRIN YAG fiber, Top right: EMPA 

map of Nd concentration in a GRIN YAG fiber, Bottom plots: 
Co-doped Nd and Ho: YAG fiber dopant concentrations in X 

(left) and Y (right) 
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• Coater designed to coat 
long lengths of single 
crystal fiber (~3-5 m) in sol 
gel solution and “soft 
bake” with hot air dryer.

• Post-coating thermal 
processing – vertical 
furnace with 1200°C max 
temperature.

• Processed fiber used for 
re-growth and dopant 
distribution

Major Accomplishment: Reel-to-Reel sol-gel 
processing system completed (Task 23)

Post-coating Thermal Processing 
Station

Long-length Coating 
System

Control 
PC

Hot Air Dryer

Precursor 
Reservoir

Top 
Spool



• Constructed in-house
• Mechanical components 

machined @ NETL/MGN
• >$200k investment (FE/ARPA-e)
• Enables novel 2-stage 

procedure
• growth followed by cladding
• 1mm -> 300um -> 100um (or 

smaller)

• More than double throughput
• Unique capability/facility

Major Accomplishment: LHPG #2
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How an SC-fiber becomes a T-sensor (Task 33)
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• Introducing the NETL Raman DTS 
(distributed temperature sensor)

• Pulsed ~350ps 532nm green laser
• Excites Raman Scattering as pulse 

propagates
• Collects Raman with Fast avalanche 

photodiodes 
• Optics designed for sapphire or YAG 

fiber
• First interrogator for SC-fiber
• First interrogator produced by NETL 

Interrogator Development Effort

Raman OTDR, Liu et al Opt. Lett., 2016



• Off-the-shelf components
• Breadboard construction
• Enabled design optimization/tinkering
• Improved prototype used for field-

testing / product version

Raman DTS – Lab Prototype
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DTS – main unit

Scope/ Display/OS

Test Furnace

DTS Main unit: inside



Major Accomplishment: DTS Field Prototype 
design
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• Flight case design
• Shock-mounted optics
• Laser safety – electrical 

interlocks
• Software for lead-in fiber
• YAG or Sapphire fibers
• Simplified operator controls
• Field tests in July at INL!
• (even more important) field 

test in October at MITRR
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• Goal – high temperature distributed or point sensor for oxygen 
concentration under conditions relevant for SOFC or post-
combustion applications.

• Oxygen sensing functional thin films (LSCF) were tested on 
silica fiber under post-combustion relevant conditions (500-
975ºC, 1-19% O2, humid conditions).

• Computational model was developed to better understand 
dynamic sensing response of model oxide film (LSTO) based 
on physics and defect chemistry.

• Reactor modification was developed to set up spatially 
varying oxygen concentration for distributed sensor testing.

Adding chemical sensor capabilities (fundamental 
research): Development of Functional Sensor Materials 
for Oxygen Sensing (Task 21)

Key Deliverables EY20
• Wuenschell, et al. "Combined plasmonic Au-nanoparticle and conducting metal oxide high-temperature optical sensing with LSTO." 

Nanoscale 12.27 (2020): 14524-14537.

• Wuenschell, et al. "The role of oxide defect chemistry in the Drude and plasmonic response of optical fiber-based sensing layers for 
high-temperature gas sensing." Oxide-based Materials and Devices XII. Vol. 11687. International Society for Optics and Photonics, 
2021.

• Li, Jiayu, et al. "Fiber Coupled Near‐Field Thermoplasmonic Emission from Gold Nanorods at 1100 K." Small (2021): 20072

Sensing Layer
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• Oxygen sensing layer tested under conditions for 
operation in post-combustion environment

• High temperature (500-975°C)
• 1-20% O2 input gas stream passed through bubbler 

humidifier
• Cross-sensitivity of oxygen sensing response tested 

with CO2
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1-20% CO2

Conclusions
• Majority of drift at high temperature corresponds 

to hydroxyl defect lines of silica (fiber).
• Broadband response of film (LSCF) found to be 

more stable.
• Silica as limiting factor bodes well for future with 

single crystal fiber as platform.

Adding chemical sensor capabilities: LSCF as 
an O2 sensor



How to test a distributed gas sensor (spatially 
varying gas test rig)
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Gas Inlet 
#1

Gas Inlet 
#2

Gas Outlet

Primary Gas Flow (from MFC array)

Secondary Gas Flow 
(from cylinder – installed 4/29/2021)

• Reactor system designed / built 
in EY20 feeds two gas flows into 
tube furnace reactor (max 
temp. 1000°C) with partition.

• Goal – to establish spatially 
varying oxygen concentration 
for testing distributed oxygen 
sensors.

• Primary gas flow: Controllable 0-
20% O2, N2 balance.

• Secondary gas flow: fixed, 
based on cylinder selected 
(both N2 and air permitted).

• Final construction / testing to 
commence upon arrival of MFC 
(COVID related shipping delay 
from supplier).



• Distributed Fiber-optic sensing will enable amazing new capabilities

• The toughest (and highest value) sensor locations are becoming 
accessible

• Single-crystal fiber will enable measurements where silica is problematic

• Interrogators can be developed at lower cost, for specific applications

• Functional materials can enable novel parameters like gas composition

• NETL can offer a complete solution with fiber, coatings, and interrogators

Major Conclusions
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