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Motivation: Flexible Operation and Extended Life

Renewable generation, demand response,
and others require operational flexibility

* Lower minimum loads than considered in design 28000 |
« Faster startup times and ramp rates 26000 |

Increased cycling operations are affecting: o
» Equipment health and life expectancy
 Plant downtime and operations & maintenance

CAISO Duck Curvell]

Net load - March 31

22,000

20,000

18,000

Megawatts

 Plant performance, efficiency, emissions =
 Flexible operation creates opportunities and | .o
challenges -
 Flexible operation requires different, more complex ol AN . N—
consideration and tools S e -
* An on-line health monitoring tool can: Net demand = Grid Demand — Renewable energy production
 Show the impacts of load-following Source: www.caiso.com

« Help to schedule O&M more effectively

« Help to develop process control strategies for
Improved flexibility 3
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Our Approach: A Hybrid First-Principles-Al Based Approach

» Advantages of first-principles and mechanistic models:
« Satisfies mass, momentum and energy balances
 Can be predictive
 Can provide spatial and temporal resolutions operational parameters

 Disadvantages of first-principles model

 Can be difficult to develop for a number of complex phenomena in boilers
* e.g., external fouling, internal deposit in boiler tubes

» Advantages and Disadvantages of Artificial Intelligence (Al) models
« Complements first-principles models

 This projects seeks to exploit the synergies of first-principles and Al models
« However, the complex phenomena of interest in boilers are uncertain and time-varying
» Must take the measurements into account

End Goal is to Explore the Development of an On-line Health Monitoring Tool
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Flexible Operation
at Power Plant

w

Plant Historian
(e.g. PI System

Boiler Monitor EPRI TULIP
Module Model Outputs: and/or BLESS
Crack Initiation and
Temperature, Pressure, | Growth Profiles | Offline
Flow, Ash Layer, Internal I Training
Resistance Profile Model Inputs: i
Real-Time Through-Wall Temp.,
Measurements Optimal Pressure, Profiles, etc. (Gaussian RBF for
- Estimator Health and Failure
Model Inputs: 1 Model Output:
Temperature, Pressure, Internal and External
Coal, Flowrates, etc. | Heat Transfer Resistance
Bayesian ML for Ash
Layer Thickness and
Heat Transfer
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Project Objectives (Tasks)

» Task 1.0 Project Management and Planning

« Task 2 — Hybrid Model Development, Validation, and Implementation at Plant A (mainly WV U)
« Subtask 2.1 — Plant Data Evaluation
« Subtask 2.2 — Adapting the First-Principles Model to Plant A
« Subtask 2.3 — Development and Validation of the Bayesian ML Model
» Subtask 2.4 — Development and Validation of the Gaussian RBF Model
 Subtask 2.5 — Modification and Implementation of the Optimal DAE Estimator
« Subtask 2.6 — Evaluation and Testing of the Hybrid Model at Plant A

« Task 3 —Validation and Integration of Hybrid Model at Plant A (mainly EPRI with Southern)
« Subtask 3.1 — Project Management
 Subtask 3.2 — Initialize the Model with AUSC Steam Loop Exemplar
« Subtask 3.3 — Collect a Snapshot of Southern Company Host Site Operation
 Subtask 3.4 — Pilot Demonstration of Model
 Subtask 3.5 — Enhance Software
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Dynamic, cross-flow, 2-D model of the superheater/reheater
based on equations for the conservation of mass and energy ===

Superheater
Outlet

Rigorous properties model and heat transfer calculationsat :
each control volume =

Generator

Non-Linear DAE system?

DAY £ (8), 2()) + Gy

g(Xk+1 J Zk+1) + y.k+1 =0

From [uuumis
Gas [
Turbine EE——

X1 = X T

Steam Drum

To Stack

Feedwater
Inlet

Economizer

yk+1 = h(xk+1 aZk+1 ) + Vk +1

Prediction Step

Correction Step

ST.:Exa9,,,=Db
where: w ~ N(0,Q) ,v ~ N(O,R) ,Y ~ N(0O,W)
G € R M*xM_ Process noise gain matrix

1. Projecting States Ahead

By - F( 229Uy, 0)

2. Projecting Error-Covariances
Ahead
M - Mﬁuk Mﬁl\k _
T IME e ME

E e R!xm* _equality constraints

1. Kalman gain
Kot = Miatp ot (Hiet Mg Hoa "+ Riq )!

2. Estimate update using
measurement at Yy

B ker = X% 1% Keor Vior = DRS00

3. Using , Xuqyseq s€5timate Zy,qx41 by
IRyttt » Zrorer ) =0

4. Error-Covariances Update
Mt = (1- Keor Hiony Mic e

I\Waste Heat Recovery. Retrieved from https://www.tlv.com/global/ME/steam-theory/waste-heat-recovery.html
2P, Mobed, S. Munusamy, D. Bhattacharyya, and R. Rengaswamy, “State and parameter estimation in
distributed constrained systems. 1. Extended Kalman filtering of a special class of differential-algebraic
equation systems,” Ind. Eng. Chem. Res., vol. 56, no. 1, pp. 206-215, 2017.

I Initial Values %29, , M, 4

where, £29, = Augmented States =[x;,z]
K, = Kalman Gain

M, = Error Covariance

H, = Measurement Matrix

10
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Input Data to WVU Hybrid Model: Plant B

* Known dataset to validate the model outputs

« HRSG Plant B has TCs installed on T91 superheater

« TCs installed on heat transfer surface of HRSG to watch the
Impact of duct burners

 (Gas and metal temperature both are measured and recorded

« Configuration and initial datasets provided to WVU
74 tubes wide; six turns: two un-finned, four finned
« T91 tubing with up to 350 um oxide thickness measured
o Hi Phspacial resolution on TCs: 3 elevations, 18 tubes across the
wi
« Conventionally only inlet and outlet steam temperatures are recorded

* \WWe also have duct burner duty, steam outlet
temperature, steam outlet pressure, unit load, etc.

 Provides a range of operating characteristics to feed into model

Excellent Example of Leveraged Utility Opportunities




.WV-WGStVH’giIﬁaUniVEI’SigL =2l :LEEELRRI g HPIONVggFTUTE
Validation of Outlet Steam Temperature

Superheater 1 Steam Outlet Temperature (Tst,out) Superheater 1- Steam Outlet Temperature difference (A Tst - model)
Dated - 4/22/2020 Time 12:00 AM - 2:26 PM Dated -4I22]2020 Time-12:200 AM to 02:26 PM
915 | 15F ' ig ' ! ' rl
i
910 - :ﬁ
-~ i ”g T
? : 7
905 |- : v 8 ] ﬁ. i
-8 =
‘ Estimator Error '
900 - Model Error 1
= RMSE
% s 100 4 RMSE (A T st ) 02:26 PM
5 i out,estimator
'E (A T stout,model)
@ or)
g— 890
@
= T
885 - 2.9807°F 0.9178°F ]
880 [ | . _
A g |
18 tllg %
"l | 1 l \ ?‘ § L&—.LL
4 = 9 ¢ ‘0 & _
—— Model Value Estimated Value — — -Measured Value ¢ |
870 ! ' : : ' ' \OJ ; ILMQ & f ﬁ
12:00 AM 03:00 AM 06:00 AM 09:00 AM 12:00 PM 02:26 PM :00 AM 03:00 AM 06:00 AM 09:00 AM 12:00 PM 02:26 PM
Time(min) Time(min)
* Model Error (AT st ., model )= Measured- Model
1+1 - (o) 1 . . .
Initial T, = 900°F (near inlet steam value)  Estimator Error (AT st ,,, estimator)= Measured- Estimator
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Superheater 1- Tube Temperature at Elevation 75

Dated - 04/22/2020 Time -12:00 AM -2:26 PM
T T T

Model Error

Estimator Error

S (AT tI:MSE )
(A T te75,model) 75,estimator
13.1460°F 3.6051°F

940 T
—— Model
—— Estimated
930 |- e Ay@rage Measurement ||
- - --Max Measurement
- = =-Min Measurement
920 - e B
% \
"’“ /‘-.’\/\-"*-"4.’”"\“' ll
\| I 1
v ! 1
910 - 4 \
4 ] 13
i P
Vi n &
gl '
900 - i
\"I
N |
\r
890 -
880 [
2
]
870 1 1 | | | |
12:00 AM 03:00 AM 06:00 AM 09:00 AM 12:00 PM 02:26 PM
Time(min) .

Model Error (A T tess 0401 )= Measured- Model
Estimator Error (A T teys egimator)= Measured- Estimator
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Prediction of Final Outlet Flue Gas Temperature from HPSH1

* Physics-based model can be

Superheater 1- Flue Gas Outlet Temeperature

Computational Iy expensive’ but - | Dated-04/22/|2020Time12:00;|AM-2:26 PM 'MOderalue
can accurately represent systems
with reasonably known

mechanisms and be instrumental

In estimating variables that

cannot be measured or
measurements are unreliable

840 |

820

Temperature(°F)

810 | | | | |
12:00 AM 03:00 AM 06:00 AM 09:00 AM 12:00 PM 02:26 PM

Time(min)
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Our Approach

Flexible Operation Boiler Monitor EPRI TULIP
at Power Plant Module Model Outputs: and/or BLESS
Crack Initiation and
Temperature, Pressure, | Growth Profiles i Offline
Flow, Ash Layer, Internal 1 Training
1l Resistance Profile Model Inputs: i
Real-Time Through-Wall Temp.,
Plant Historian Measurements Optimal Pressure, Profiles, etc. | Gaussian RBF for
(e.g. PI System Estimator Health and Failure
Model Inputs: Model Output:
Temperature, Pressure, Internal and External
Coal, Flowrates, etc. Heat Transfer Resistance

Bayesian ML for Ash
Layer Thickness and

Heat Transfer
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Bayesian ML with Consideration of Colored Noise

Motivation

* Desired to obtain a data-driven
model given input-output data

* Plant measurement comes with
high noise with unknown
characteristics. The model also
has noise.

* Noises in different variables
can be correlated.

* Thus, It Is desired to estimate
model parameters whose
probability density function is
‘close’ to the truth.

Bayesian Inferencing EM Algorithm

 Given a general nonlinear

SyStem . [ Assume priors )
x=foouwo) 0 N on parameters
I
y = g(x) " E-step: Estimate |
posterior probability}
I
) update model ( M step: update )
° BayeS rule [ parameters } hyperparameters )
L(y|6)p(6)
n(0ly) = 2
where m(y) = [, 1(y|0)p(8)do "0
* Objective | |

y5,0" =maxp(y,0|y)
y,0

16
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Validation of Steam Outlet Temperature

Superheater 1 Steam Outlet Temperature Superheater 1 Steam Outlet Temperature
04/22/202012:00AM - 02:26PM 04/22/2020 12:00AM - 02:26PM
Bilinear Model Extended Bilinear Model
= = = Plant Data Modd = = = Plant Data Modd

2 ”
o Y
5 E !
= 895 = 895 S S X |
5 : 3
2 <¥]
= 890 E‘ 890
& o

885 = 885

RMSE: 1.21 °F RMSE: 1.76 °F
880 No. of Parameters: 57 880 No. of Parameters: 66
875 - 875 |

Time Time
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Validation of Flue Gas Temperature

Superheater 1 Outlet Flue Gas Temperature at Elevation 71 Superheater 1 Outlet Flue Gas Temperature at Elevation 71
04/22/202012:00AM - 02:26PM 04/22/2020 12:00AM - 02:26PM

Bilinear Model Extended Bilinear Model
945

950

940

=]
(%)
wn

Temperature (°F)
= =]
b L]
Ln [—]

Temperature (°F)

920 RMSE: 0.98 °F
No. of Parameters: 57 / = = = PlantData —— Modd

915 915
12:00 AM 2:24 AM 4:48 AM 7:12 AM 9:36 AM 12:00 PM 2:24 PM 12:00 2:24 AM 4:48 AM 7:12AM 9:36 AM 12:00 PM 2:24PM

Time Time

920 RMSE: 1.54 °F
No. of Parameters: 66 / = = = Plant Data

Modd
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Module Model Outputs: and/or BLESS
Crack Initiation and
Temperature, Pressure, | Growth Profiles | Offline
Flow, Ash Layer, Internal I Training
Resistance Profile Model Inputs: I
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Dynamic and Probabilistic NN

Gaussian Radial Basis Function Model Inputs Model Outputs
(RBF) Network * Inlet flue gas temperature (°F) « Outlet flue gas temperature
* Currently deterministic hybrid static- + Inlet steam temperature (°F) (G71) (°F)

dynamic networks have been developed

 Efficient solution algorithms for these
hybrid structures are being developed * Inlet steam mass flow rate (Kg/hr)

« Algorithmic capabilities have been
developed to impose physics constraints
for the hybrid network

« Inlet flue gas mass flow rate (Kg/hr) ~ * Outlet steam temperature (°F)
 Tube temperature (E75) (°F)

Hammerstein-Type Network Wiener-Type Network
Inputiayer Hidden layer 1 Hidden layer n Output layer Dynamic Part Inputlayer  Hidden layer 1 Hidden layer n Outout layer Dynamic Part
v Hammerstein- ' T Wiener-type
X type Network — Netw:)_rk
input (non-linear static oty o (NON-linEEr

variables dynamiC network

variables .

variables network followed followed by non-
by non_—llnear linear static
- dynamic network) . network)

w1-Neurons ----

t---Neurons -«

20
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Hybrid Static-Dynamic NN vs Static NN

Superheater 1 - Steam Outlet Temperature Superheater 1 - Steam Outlet Temperature
Validation of Static Network Validation of Static-Dynamic Network
—— Timespan: 04-22-20 12:00 AM -- 04-22-20 2:26 PM 015 Timespan: 04-22-20 12:00 AM -- 04-22-20 2:26 PM
Measurement Measurement
910 I 910
l
905 905 F
& 900 - 900 \
¢ 2 |
= = [
= 895 = 895 ,
S 5
e = :
5 890 = 890
&= =
885 885
880 880
|‘ RMSE: 1.78 °F |‘ RMSE: 1.02 °F
875 . 3 - . 875 - . - . .
12:00 AM  03:00 AM  06:00 AM  09:00 AM  12:00 PM 02:26 PM 12:00 AM  03:00 AM  06:00 AM 09:00 AM 12:00 PM 02:26 PM
Time (mins) Time (mins)

« The hybrid static-dynamic network provides a better fit especially for
over/undershoots as compared to the pure static network.

 Predicting these over/undershoots correctly is important for health analysis since

they may damage the equipment items.

21
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945

940 F

Temperature (°F)
o
W
(—]

925

920 F

RMSE: 1.51 °F

915

Superheater 1 - Qutlet Flue Gas Temperature at Elevation 71 (G71)
Validation of Static Network
Timespan: 04-22-20 12:00 AM - 04-22-20 2:26 PM

——~NN

Measurement

f

Time (mins)

12:00 AM  03:00 AM  06:00 AM  09:00 AM

12:00 PM 02:26 PM

Superheater 1 - Outlet Flue Gas Temperature at Elevation 71 (G71)

Validation of Static-Dynamic Network

945

940 F

Temperature (°F)

925

Timespan: 04-22-20 12:00 AM -- 04-22-20 2:26 PM

Measurement

— —-NN

|
|
|
|
|

RMSE: 0.83 °F

|

920

12:00 AM  03:00 AM  06:00 AM  09:00 AM  12:00 PM 02:26 PM

Time (mins)

* The hybrid static-dynamic network provides a significantly better fit as compared to
the pure static network in validating the measured flue gas outlet temperature at

Elevation 71 (G71).

22
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Hybrid Static-Dynamic NN vs Static NN

Superheater 1 - Tube Temperature at Elevation 75 (E75) Superheater 1 - Tube Temperature at Elevation 75 (E75)
Validation of Static Network Validation of Static-Dynamic Network
- Timespan: 04-22-20 12:00 AM - 04-22-20 2:26 PM 015 Timespan: 04-22-20 12:00 AM - 04-22-20 2:26 PM
Average Measurement Average Measurement
— — =NN o e N[N
= &= \
. =
@ g ' :
g =] ’ i
= = 895F f
S 5 l
3 = :
S £ 890 s |
= = " |
1
885 885
880 880 F
RMSE: 2.64 °F RMSE: 1.16 °F
875 E E ' AL L 875 s L ' ' | '
12:00 AM  03:00 AM  06:00 AM  09:00 AM  12:00 PM 02:26 PM 12:00 AM  03:00 AM  06:00 AM  09:00 AM  12:00 PM 02:26 PM
Time (mins) Time (mins)

* The hybrid static-dynamic network provides a significantly better fit as compared to
the pure static network in validating the average tube temperature at Elevation 75
(E75).
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Boiler Tubes and Damage Mechanisms

« Boiler tubes are fundamentally heat exchangers T—%\

Tube wall

that run in the creep regime
 Creep Is temperature-accelerated a damage mechanism Combustion

gas

oxide

leading to tube rupture after life is consumed

. +t25C/45F consumes creep life 6x faster; the same as +33%
stress

. +t50C/90F consumes creep life 40x faster; the same as +140% .
stress S Sl S R

 Tubes are exposed to internal and external Ty

Steam flow

T

Fireside oxige/deposit
si
Stee,ryz@e boundary layer

Fireside bound

Ste

surface deg radation and wall loss T,, T«: Temperatures of combustion gas and steam, respectively

Tq : Growth temperature of oxide scale

» Most critical is internal steam oxide growth

» Complex, multi-phase constructions, up to about 0.5 mm
(20 mils).

 Oxides resist heat transfer, driving up metal temperature

» Thickness can be measured periodically by UT from about
0.05 mm (2 mils) and greater during an outage

Interaction Between Damage Mechanisms Leads to
Self-Acceleration

25



COMPILE PRESSURE DATA

Data ‘scrubbed’

COMPILE TEMPERATURE DATA

| W

Review of
inspection data

Mat. oD
Review of
design and
fabrication _L

s Tube metal temperature(s)
s Steam temperature(s)

+ Nominal operation

s ‘Upset’ (e.g. duct-firing)

Review of inspection
data and metallurgical

evaluation

ata ‘scrubbed’

Steamside
scale

s+ Micros.

*

Comp. || Degrad. | .. Damage

Review action

Uncertainty reduction/measurement

- Calculation

- Input for assessment

Legend

J

Level I/ll Assessment

Material model g

( Morphology
| Composition

J

-
g Ve

Material

condition

+ New vs. Aged
+ Gross degradation
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Metal Oxides Thermal Conductivity

Literature Data:

* This research Is aiming to reduce uncertainty in Thermal Conductivity of Steel Oxides

the impact of oxide growth on metal temperature
» Oxides change with time: thickness, porosity, spallation, — , | ™«
and precent Fe,O, vs. Fe;0, || e
* Develop a better, more rigorous understanding of oxide Lm NI
thermal conductivity as it relates to morphology =
* Currently metal oxide thermal conductivity N
reported over one order of magnitude Theoretical Analysis:
« This results in a significant A20C in the prediction _jnpact of Conduetvity o gas: soc
- Or about 5x life consumption TZZ —
* |eads to a need for experimental evaluation of ex-service 20¢ ¥
boiler tubes =™ o

Oxide Thermal Conductivity (W/m-K) (um)
27
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* EPRI pursuing two methods in parallel .

« ASTM Standard test method E1461 Laser Flash /_ |

« Works well for multi-layered structures like boiler tube + oxide e C > D w
« Can be run at elevated temperature “} ! — “; e 1

g %; T
N

 Preliminary results show the intense burst of energy does not cause oxide spallation € = L
» Water bath experiment at EPRI laboratory p— L

WVWesthgirﬁaUmversigz, e e=dr={
Measuring Thermal Conductivity of Oxides

« Monitor heat flux through the specimen & ' masi

LASER
ENERGY

 Simpler setup for rapid, large area measurements

» Database of seven ex-service materials to provide a range of
real-world oxides

e T22,T91, T92, and 347H
 Oxide scale thicknesses from 100 to 360 um

Experimental Testing on Ex-Service Tubes to Reduce Uncertainty
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Three Areas of Work at Plant A Unit

* “Signature” analysis relating flue

gas temperature and unit BT R 30 Rk S 1 b i 3
OHR(;fl_atmg conditions (load) by 2 A -t'-r-fu-ga‘-.u
s 1ERB /e’ r ‘ oRAE
* Install T22 dutchmen with TCs e
Into Final Superheater 1T | ,
* Fabricated by commercial : Y BN
manufacturing to ASME B&PVC > | JAcgess Port
« Characterize damage accumulation to  jr2 DRI | | foRHVT LaRce

validate prediction Locatlon
+ Installed alongside Clemson sensors

 Extra flue gas monitoring TCs
from penthouse

 Leveraging Southern Company
supply base and standard
procedures
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Temperature Distribution in Plant A Unit Final Superheater

- - [ ]outetTC
 Flue gas temperature measurement is a critical I viedian

Input to the model I et TCs
« Known to vary across width with a preference for |+ % 550

dutchmen on the edges

 HVT to provide a fingerprint of flue gas
measurements

« Sampling performed at low, medium, and full load
* One snapshot in time (a day) and only 20’ from either side

 Anticipate to run for one day in Spring and again after dutchmen -
are installed 800

 Flue gas measurements then correlated to heat pickup in
steam by inlet-outlet TCs

 Access port is just ahead of the final superheater at mid- —
elevation

« Combine this inspection with han%lng TC wires
from the roof of the boiler (beneath penthouse)

l

1

I
'THJT'

950 -+

900 ~

% ~500
% L

Steam Temperature (F)

b4

-450

T T T T T
A3 A51 A99* A147 A195

Plant-Specific Data to Validate Model Parameters

(1) aunesadwal
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Conclusions

 Collaboration between research and industry providing significant benefit to
this project’s applicability to actual plants
« Model development is integrated with in-plant demonstration
« Ex-service material characterization narrows uncertainty in materials

* Boiler tube life management is an expensive industry issue
« Damage to components is becoming less predictable with flexible operation

 Preliminary validation using operational data
 Estimator-based approach and Al models including show good feasibility

 Future work will focus on:
 Extending the fidelity of first-principles model, DAE estimator, and probabilistic NN model
« Handling noise for the Bayesian ML approach
« Validation of the hybrid approach using additional plant data under wider set of conditions

* On-track with respect to timeline, milestones, and budget leading into a Fall
plant installation effort
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