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Motivation: Flexible Operation and Extended Life

• Renewable generation, demand response, 
and others require operational flexibility

• Lower minimum loads than considered in design

• Faster startup times and ramp rates

• Increased cycling operations are affecting:
• Equipment health and life expectancy

• Plant downtime and operations & maintenance

• Plant performance, efficiency, emissions

• Flexible operation creates opportunities and 
challenges

• Flexible operation requires different, more complex 
consideration and tools

• An on-line health monitoring tool can:
• Show the impacts of load-following

• Help to schedule O&M more effectively

• Help to develop process control strategies for 
improved flexibility 3

Source: www.caiso.com

CAISO Duck Curve[1]

Net demand = Grid Demand – Renewable energy production
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Our Approach: A Hybrid First-Principles-AI Based Approach

• Advantages of first-principles and mechanistic models:
• Satisfies mass, momentum and energy balances

• Can be predictive

• Can provide spatial and temporal resolutions operational parameters

• Disadvantages of first-principles model
• Can be difficult to develop for a number of complex phenomena in boilers

• e.g., external fouling, internal deposit in boiler tubes

• Advantages and Disadvantages of Artificial Intelligence (AI) models
• Complements first-principles models

• This projects seeks to exploit the synergies of first-principles and AI models
• However, the complex phenomena of interest in boilers are uncertain and time-varying

• Must take the measurements into account

End Goal is to Explore the Development of an On-line Health Monitoring Tool
5
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Project Objectives (Tasks)

• Task 1.0 Project Management and Planning 

• Task 2 – Hybrid Model Development, Validation, and Implementation at Plant A (mainly WVU)

• Subtask 2.1 – Plant Data Evaluation

• Subtask 2.2 – Adapting the First-Principles Model to Plant A

• Subtask 2.3 – Development and Validation of the Bayesian ML Model 

• Subtask 2.4 – Development and Validation of the Gaussian RBF Model

• Subtask 2.5 – Modification and Implementation of the Optimal DAE Estimator

• Subtask 2.6 – Evaluation and Testing of the Hybrid Model at Plant A

• Task 3 – Validation and Integration of Hybrid Model at Plant A (mainly EPRI with Southern)

• Subtask 3.1 – Project Management

• Subtask 3.2 – Initialize the Model with AUSC Steam Loop Exemplar

• Subtask 3.3 – Collect a Snapshot of Southern Company Host Site Operation

• Subtask 3.4 – Pilot Demonstration of Model

• Subtask 3.5 – Enhance Software
8
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Model and Estimation Approach

• Dynamic, cross-flow, 2-D model of the superheater/reheater 
based on equations for the conservation of mass and energy

• Rigorous properties model and heat transfer calculations at 
each control volume

• Non-Linear DAE system2

10

1Waste Heat Recovery. Retrieved from https://www.tlv.com/global/ME/steam-theory/waste-heat-recovery.html
2 P. Mobed, S. Munusamy, D. Bhattacharyya, and R. Rengaswamy, “State and parameter estimation in 

distributed constrained systems. 1. Extended Kalman filtering of a special class of differential-algebraic 

equation systems,” Ind. Eng. Chem. Res., vol. 56, no. 1, pp. 206–215, 2017.

xk+1 = xK 𝑘Δ𝑡׬+
(𝑘+1)Δ𝑡

𝑓(𝑥 𝑡 , 𝑧(𝑡)) + Gωk+1

g(xk+1 , zk+1 )  + ϒk+1 = 0

yk+1 = h(xk+1 ,zk+1 ) + vk +1

S.T. : Exaug
k+1 = b

where: ω ~ N(0,Q) ,v ~ N(0,R) ,ϒ ~ N(0,W)

G є R m x m - Process noise gain matrix

E  є R l x m+n - equality constraints

https://www.tlv.com/global/ME/steam-theory/waste-heat-recovery.html


Input Data to WVU Hybrid Model: Plant B

• Known dataset to validate the model outputs

• HRSG Plant B has TCs installed on T91 superheater
• TCs installed on heat transfer surface of HRSG to watch the 

impact of duct burners
• Gas and metal temperature both are measured and recorded

• Configuration and initial datasets provided to WVU
• 74 tubes wide; six turns: two un-finned, four finned

• T91 tubing with up to 350 μm oxide thickness measured 

• High spacial resolution on TCs: 3 elevations, 18 tubes across the 
width

• Conventionally only inlet and outlet steam temperatures are recorded

• We also have duct burner duty, steam outlet 
temperature, steam outlet pressure, unit load, etc.

• Provides a range of operating characteristics to feed into model

Excellent Example of Leveraged Utility Opportunities

11



Validation of Outlet Steam Temperature

Initial To = 900o F (near inlet steam value)
• Model Error (Δ T st out, model )= Measured- Model
• Estimator Error (Δ T st out, estimator)= Measured- Estimator 

Model Error 
RMSE 

(Δ T stout,model)

Estimator Error 
RMSE 

(Δ T stout,estimator)

2.9807 O F 0.9178 O F



Validation of Tube Temperature

Model Error 
RMSE 

(Δ T te75,model)

Estimator Error 
RMSE 

(Δ T te75,estimator)

13.1460 O F 3.6051 O F

• Model Error (Δ T te75,model )= Measured- Model
• Estimator Error (Δ T te75,estimator)= Measured- Estimator 



Prediction of Final Outlet Flue Gas Temperature from HPSH1

• Physics-based model can be 
computationally expensive, but 
can accurately represent systems 
with reasonably known 
mechanisms and be instrumental 
in estimating variables that 
cannot be measured or 
measurements are unreliable



Our Approach
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Bayesian ML with Consideration of Colored Noise

Motivation

• Desired to obtain a data-driven 
model given input-output data

• Plant measurement comes with 
high noise with unknown 
characteristics. The model also 
has noise. 

• Noises in different variables 
can be correlated.

• Thus, it is desired to estimate 
model parameters whose 
probability density function is 
‘close’ to the truth.

16

EM AlgorithmBayesian Inferencing

• Given a general nonlinear 

system
ሶ𝑥 = 𝑓 𝑥, 𝑢, 𝜃

𝑦 = 𝑔 𝑥

• Bayes’ rule

𝜋 ȁ𝜃 𝑦 =
𝑙 ȁ𝑦 𝜃 𝑝 𝜃

𝑚 𝑦

where   𝑚 𝑦 = 𝛩׬ 𝑙 𝑦ȁ𝜃 𝑝 𝜃 𝑑𝜃

• Objective
ො𝑦∗, 𝜃∗ = 𝑚𝑎𝑥

ො𝑦,𝜃
𝑝 ො𝑦, 𝜃ȁ𝑦



RMSE: 1.21 °F

No. of Parameters: 57

RMSE: 1.76 °F

No. of Parameters: 66

Validation of Steam Outlet Temperature



RMSE: 0.98 °F

No. of Parameters: 57
RMSE: 1.54 °F

No. of Parameters: 66

Validation of Flue Gas Temperature
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Dynamic and Probabilistic NN

20

Hammerstein-Type Network Wiener-Type Network

Input
variables

Output
variables

Hammerstein-

type Network

(non-linear static 

network followed 

by non-linear 

dynamic network)

Wiener-type 

Network

(non-linear 

dynamic network 

followed by non-

linear static 

network)

Input
variables

Output
variables

Gaussian Radial Basis Function 
(RBF) Network

• Currently deterministic hybrid static-
dynamic networks have been developed

• Efficient solution algorithms for these 
hybrid structures are being developed 

• Algorithmic capabilities have been 
developed to impose physics constraints 
for the hybrid network 

Model Inputs

• Inlet flue gas temperature (°F)

• Inlet steam temperature (°F)

• Inlet flue gas mass flow rate (Kg/hr)

• Inlet steam mass flow rate (Kg/hr)

Model Outputs

• Outlet flue gas temperature 

(G71) (°F) 

• Outlet steam temperature (°F)

• Tube temperature (E75) (°F)



Hybrid Static-Dynamic NN vs Static NN

• The hybrid static-dynamic network provides a better fit especially for 
over/undershoots as compared to the pure static network. 

• Predicting these over/undershoots correctly is important for health analysis since 
they may damage the equipment items. 21

RMSE: 1.78 °F RMSE: 1.02 °F



Hybrid Static-Dynamic NN vs Static NN

• The hybrid static-dynamic network provides a significantly better fit as compared to 
the pure static network in validating the measured flue gas outlet temperature at 
Elevation 71 (G71).

22

RMSE: 1.51 °F RMSE: 0.83 °F



Hybrid Static-Dynamic NN vs Static NN

• The hybrid static-dynamic network provides a significantly better fit as compared to 
the pure static network in validating the average tube temperature at Elevation 75 
(E75). 

23

RMSE: 2.64 °F RMSE: 1.16 °F
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Boiler Tubes and Damage Mechanisms

• Boiler tubes are fundamentally heat exchangers 
that run in the creep regime

• Creep is temperature-accelerated a damage mechanism 
leading to tube rupture after life is consumed

• +25C/45F consumes creep life 6x faster; the same as +33% 
stress

• +50C/90F consumes creep life 40x faster; the same as +140% 
stress

• Tubes are exposed to internal and external 
surface degradation and wall loss

• Most critical is internal steam oxide growth
• Complex, multi-phase constructions, up to about 0.5 mm 

(20 mils). 
• Oxides resist heat transfer, driving up metal temperature
• Thickness can be measured periodically by UT from about 

0.05 mm (2 mils) and greater during an outage

Interaction Between Damage Mechanisms Leads to 
Self-Acceleration 

25



Level I/II Assessment
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Metal Oxides Thermal Conductivity

• This research is aiming to reduce uncertainty in 
the impact of oxide growth on metal temperature

• Oxides change with time: thickness, porosity, spallation, 
and precent Fe2O3 vs. Fe3O4

• Develop a better, more rigorous understanding of oxide 
thermal conductivity as it relates to morphology

• Currently metal oxide thermal conductivity 
reported over one order of magnitude

• This results in a significant Δ20C in the prediction

• Or about 5x life consumption

• Leads to a need for experimental evaluation of ex-service 
boiler tubes

27
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Measuring Thermal Conductivity of Oxides

• EPRI pursuing two methods in parallel

• ASTM Standard test method E1461 Laser Flash

• Works well for multi-layered structures like boiler tube + oxide

• Can be run at elevated temperature

• Preliminary results show the intense burst of energy does not cause oxide spallation

• Water bath experiment at EPRI laboratory

• Monitor heat flux through the specimen

• Simpler setup for rapid, large area measurements 

• Database of seven ex-service materials to provide a range of 
real-world oxides

• T22, T91, T92, and 347H

• Oxide scale thicknesses from 100 to 360 μm

Experimental Testing on Ex-Service Tubes to Reduce Uncertainty
28



Three Areas of Work at Plant A Unit

• “Signature” analysis relating flue 
gas temperature and unit 
operating conditions (load) by 
HVT

• Install T22 dutchmen with TCs 
into Final Superheater

• Fabricated by commercial 
manufacturing to ASME B&PVC 

• Characterize damage accumulation to 
validate prediction

• Installed alongside Clemson sensors

• Extra flue gas monitoring TCs 
from penthouse

• Leveraging Southern Company 
supply base and standard 
procedures 29

Final 
Superheater

Access Port
for HVT LanceT22 Dutchmen

Location

Extra Flue Gas TCs



Temperature Distribution in Plant A Unit Final Superheater

• Flue gas temperature measurement is a critical 
input to the model

• Known to vary across width with a preference for 
dutchmen on the edges

• HVT to provide a fingerprint of flue gas 
measurements 

• Sampling performed at low, medium, and full load
• One snapshot in time (a day) and only 20’ from either side
• Anticipate to run for one day in Spring and again after dutchmen 

are installed

• Flue gas measurements then correlated to heat pickup in 
steam by inlet-outlet TCs

• Access port is just ahead of the final superheater at mid-
elevation

• Combine this inspection with hanging TC wires 
from the roof of the boiler (beneath penthouse)

Plant-Specific Data to Validate Model Parameters
30
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Conclusions

• Collaboration between research and industry providing significant benefit to 
this project’s applicability to actual plants

• Model development is integrated with in-plant demonstration

• Ex-service material characterization narrows uncertainty in materials 

• Boiler tube life management is an expensive industry issue
• Damage to components is becoming less predictable with flexible operation

• Preliminary validation using operational data 
• Estimator-based approach and AI models including show good feasibility

• Future work will focus on:
• Extending the fidelity of first-principles model, DAE estimator, and probabilistic NN model 

• Handling noise for the Bayesian ML approach 

• Validation of the hybrid approach using additional plant data under wider set of conditions

• On-track with respect to timeline, milestones, and budget leading into a Fall 
plant installation effort
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Thank you for your attention

Questions?
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