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1. Project Description and Objectives 

NETL’s MFiX —Multiphase Flow with Interphase eXchange

• Central to the laboratory’s multiphase flow reactor 
modeling efforts

• Provides support to achieve DOE’s goals
1. Cost of Energy and Carbon Dioxide (CO2) 

Capture from Advanced Power Systems
2. Power Plant Efficiency Improvements 

• Built with varying levels of fidelity/computational 
cost
▪ Lower fidelity models for large scale reactor 

design
▪ High fidelity models to support the 

development of lower fidelity models
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1. Project Description and Objectives 

• Fine grid with 1.3M cells
• Two solid phases (coal and recycled ash)
• Detailed gasification chemical kinetic (17 gas 

species, 4 solid species)

High-end validation study:

What was missing in the model?

No real radiative heat transfer modeling 
available in MFiX!

Status of the beginning of the project

Driving Question/Motivation

Enhance MFiX capabilities by including 
models for radiative heat transfer 
following MFiX’s multi-fidelity approach

Results from : “Fluidized Beds – recent applications”, 
W. Rogers, 215 IWTU Fluidization Workshop 



1. Project Description and Objectives 

MFIX-RAD development plan 
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PMC +  Line-by-line model (full spectral resolution ~10 million 
lines) -> model error free

PMC +  Weighted Sum of Gray Gases (WSGG) model 

P1 +  WSGG model (gas & particles)

P1 +  Gray gas & particle model 
(neglect all spectral variations)

Industrial Model (main application)

“Basic Model”

Research Models (used for benchmarking)

P1 +  WSGG model & gray particles

P1 + gray constant (neglect all 
spectral and spatial variations)

Usable in MFIX-TFM and 
MFIX-DEM!



2. Project Update
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T-1: Project 
Management and 
Planning

T-2: Testing of the 
previously developed 
MFIX-RAD Radiation 
Model Plug-In

T-3: Implementing basic 
radiation model within 
MFIX-DEM

T-4: Implementation 
and Verification of 
Industrial Models

T-5: Industrial Model 
Application and Analysis

T-6: Development of 
High-End Research 
Models

T-7: Comprehensive 
Validation and 
Benchmark

We have received a 1 year, no cost extension

Done!

In progress



2. Project Update
Modeling approach

ε𝑔𝜌𝑔𝑐𝑝𝑔(
𝜕𝑇𝑔

𝜕𝑡
+ 𝑢𝑔 . ∆𝑇𝑔) = 𝛻𝑞𝑔 + σ𝑚=1

𝑀 𝐻𝑔𝑠𝑚 − ∆𝐻𝑟𝑔 + 𝐻𝑤𝑎𝑙𝑙 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑔 − 𝛻. റ𝑞𝑟𝑔

Energy equations for MFiX-TFM

ε𝑠𝑚𝜌𝑠𝑚𝑐𝑝𝑠𝑚(
𝜕𝑇𝑠𝑚
𝜕𝑡

+ 𝑢𝑠𝑚 . ∆𝑇𝑠𝑚) = 𝛻𝑞𝑠𝑚 + σ𝑚=1
𝑀 𝐻𝑔𝑠𝑚 − ∆𝐻𝑟𝑠𝑚 − 𝛻. റ𝑞𝑟𝑠𝑚Solids

Gas

Single particle/parcel Energy equation for MFiX-DEM or MFIX-PIC

𝑚𝑖𝑐𝑝,𝑖
𝑑𝑇𝑖
𝑑𝑡

= ෍

𝑛=1

𝑁𝑖

𝑞𝑖,𝑗 + 𝑞𝑖,𝑓 + 𝑞𝑖,𝑟𝑎𝑑 + 𝑞𝑖,𝑤𝑎𝑙𝑙

Source/Sink Terms are obtained from the thermal radiation model! 



2. Project Update

𝑑𝐼𝜂

𝑑𝑠
= Ԧ𝑠 ⋅ 𝛻𝐼𝜂 = 𝜅𝜂𝐼𝑏𝜂

−𝜅𝜂𝐼𝜂

−𝜎𝑠𝜂𝐼𝜂 +
𝜎𝑠𝜂

4𝜋
න 𝐼𝜂 Ԧ𝑠′ Φ𝜂( 𝑠, Ԧ𝑠

′)𝑑Ω

The RTE is an integro-differental equation for the 
spectral intensity 𝐼𝜂(𝑥, 𝑦, 𝑧, 𝜙, 𝜓, 𝜂)

(a function of 6 variables!)

Source term in the energy equation:

𝑆𝑟𝑎𝑑 = 𝛻 ⋅ Ԧ𝑞𝑟𝑎𝑑 = න

0

∞

𝜅𝜂 4𝜋𝐼𝑏𝜂 −න
4𝜋

𝐼𝜂𝑑Ω 𝑑𝜂

• 3 spatial dimensions Ԧ𝑟 𝑥, 𝑦, 𝑧 :CFD discretization
• 2 directional dimensions Ԧ𝑠 𝜙, 𝜓 : RTE solvers
• 1 spectral dimension 𝜂 : spectral models

Solution approach:
𝐺𝜂 spectral incident radiation

Modeling approach



Start

Initialize computations

Decompose the domain

Compute various terms/fluxes in 
equations for the fluid phase

Apply BC and solve the system of 
equations for fluid variables 

Compute various terms/fluxes in 
equations for solid phases

Apply BC and solve the system of 
equations for solid phase variables 

Output
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time steps
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2. Project Update

NonGray-WSGG

Modeling overview

LBL

Spectral Buckius-Hwang correlation



T6: Development of High-End Research Models
2. Project Update

Photon Monte-Carlo Method (PMC)

• PMC is essentially a Monte Carlo Integration of the RTE
• If it is coupled with a spectral database, this leads to a “model error 

free” solution of the RTE (numerical errors still present though)
• Work mostly done by MS student David Tobin

Development approach
• Defined a basic interface to MFIX
• David coded the serial PMC method as a stand-

alone Fortran program using data structures 
following “MFIX”

• After testing, the PMC solver was fully integrated 
into MFIX-RAD with the help of Dr. Kotteda

• Dr. Kotteda finished the parallel implementation of 
the PMC solver 

• Implementing spectral line-byline (LBL) model

𝐹𝑎𝑏𝑠𝑜𝑟𝑏 = 1 − 𝑒𝜅𝐷𝑐𝑒𝑙𝑙

𝐼𝜆 𝑆 = 𝐼𝜆 0 𝑒− 0׬
𝑠
𝜅𝜆𝑆

∗𝑑𝑆∗ ≈ 𝐼𝜆 0 𝑒−𝜅𝜆𝑆

Integrate RTE along a given path length 
(Beer’s Law)

Fraction of ray’s energy absorbed in the cell 



• 3D Steady, single phase, constant gray

• Constant absorption coefficient = 0.1, no-scattering

• Varying wall emissivity 

• Mesh: 17x17x34, tracked 𝑁 = 109 rays, serial run 
time about 10min

2. Project Update
T6: Development of High-End Research Models

Verification of MFIX-PMC solver by comparison with 
highly resolved DOM (32x16 rays)

Wall heat flux along front wall (more sensitive 
than source term!)

න
Ω

𝛻 ⋅ Ԧ𝑞𝑟𝑎𝑑𝑑𝑉 = න
𝑑Ω

Ԧ𝑞𝑟𝑎𝑑 ⋅ ො𝑛 𝑑𝑆

Check conservation of energy 
with divergence theorem:

Average Relative Error of PMC Results: 0.00%
Average Relative Error of DOM Results: 4.94%

PMC inherently conserves energy! 
Serial and basic parallel 
implementation!



2. Project Update
T6: Development of High-End Research Models

PMC-LBL development 

• Use the most up to date version of the HITRAN database https://hitran.org/
• Access through “HITRAN Application Programming Interface (HAPI)” 
• HAPI is a set of routines in Python to download LBL spectral data and calculate absorption coefficient 

spectra (and many other functions)
• We developed several python scripts to generate the required database (1-2GB) using about 1.2 million 

lines

Example: CO2 at T=1200K

https://hitran.org/


2. Project Update
T6: Development of High-End Research Models

PMC-LBL development 

Probability of the number of Photons emitted in [𝜂 − 𝑑𝜂, 𝜂 + 𝑑𝜂] is proportional to 𝜅𝜂𝐼𝑏𝜂𝑑𝜂

Random number relation for emission wavenumber: 
𝑅𝜂,𝑖 is a uniform random number in [0,1) 𝑅𝜂,𝑖 =

0׬
𝜂
𝜅𝑝𝜂,𝑖𝐼𝑏𝜂𝑑𝜂

0׬
∞
𝜅𝑝𝜂,𝑖𝐼𝑏𝜂𝑑𝜂

=
𝜋

𝜅𝑝,𝑖𝜎𝑇
4
න
0

𝜂

𝜅𝑝𝜂,𝑖𝐼𝑏𝜂𝑑𝜂

We don’t want to calculate these integrals for every 
PMC step so we generate a database (look-up table) as 
a pre-processing step

• For every photon ray that is emitted in a cell, 
draw a uniform random number 𝑅𝜂 and then 

find the corresponding wavenumber from the 
look-up table 



2. Project Update
T6: Development of High-End Research Models

PMC-LBL development 

For a gas mixture with molar fractions 𝑥𝑖, things are a bit more tricky (following the algorithm of Wang and 
Modest IJHMT 50 (2007):

𝑅𝜂 denotes the uniform random number drawn for the mixture and we need to find the 

corresponding wavenumber of the photon ray!

Implicit relation 𝑅𝜂 =
σ𝑖 𝑥𝑖𝜅𝑝,𝑖𝑅𝜂,𝑖
σ𝑖 𝑥𝑖𝜅𝑝,𝑖

Direct inversion from 𝑅𝜂 to 𝜂 not possible => solve 

numerically using bisection method (Newton method not 
possible due to strongly varying gradients!)

Store the database

𝑅𝜂,𝑖 = 𝑓𝑅,𝑖 𝜂, 𝑇 𝜅𝑝𝜂,𝑖 = 𝑓𝜅,𝑖 𝜂, 𝑇

For all species, 𝑖 = 1,2, … , 𝑁𝑠𝑝𝑒𝑐

Using a hybrid root 
finding method such 
as Brent’s method 
reduced cost by 33% 
compared to simple 
bisection!



2. Project Update
T6: Development of High-End Research Models

PMC-LBL development 

Algorithm

• Draw a uniform random number U
• Set bracketing guesses for bisection method e.g. a =
𝜂𝑚𝑖𝑛, 𝑏 = 𝜂𝑚𝑎𝑥

• Use bisection method to find 𝜂 such that 

𝑈 − 𝑅𝜂 = 𝑈 −
σ𝑖 𝑥𝑖𝜅𝑝,𝑖𝑅𝜂,𝑖
σ𝑖 𝑥𝑖𝜅𝑝,𝑖

= 0

Test

• Choose a gas mixture: 𝑇 = 1200𝐾, 𝑥𝐶𝑂2 = 0.1, 𝑥𝐻2𝑂 = 0.2

• Calculate the exact mixture random number relation using 

𝑅𝜂 =
𝜋

𝜅𝑝𝜎𝑇
4 0׬

𝜂
𝜅𝑝𝜂𝐼𝑏𝜂𝑑𝜂

• Draw 1 million uniform random numbers 
• Use the random number database and the mixture random 

number algorithm and then find the 𝜂 values

Result



2. Project Update
T6: Development of High-End Research Models

• 3D Steady, single phase 

• 𝑥𝐶𝑂2 = 0.1, 𝑥𝐻2𝑂 = 0.2

• Varying wall emissivity 

• Mesh: 17x17x34, tracked 𝑁 = 109 rays

• LBL with 1.2 million lines, 20 temeperatures

Now we can finish Task 7 “Comprehensive Validation and Benchmark”:

Is the observed error of the industrial model (P1, WSGG-NonGray) due to
• the simplified P1 RTE solver (test my using PMC with WSGG-NonGray)
• the simplified spectral WSGG-NonGray model -> test alterative WSGG models 



3. Preparing Project for Next Steps

• MFiX is widely used as CFD tool for modeling/optimization of reacting 
multiphase flow

• MFiX currently has only minimal radiative heat transfer modeling capability

• MFIX-RAD development adds

• P1 + non-gray WSGG as the appropriate model for industrial applications 
(not available in either commercial (ANSYS-Fluent) or other open source 
(OpenFOAM) CFD codes

• Model error free PMC solver to produce case specific benchmark data for 
RTE solver and Spectral Model accuracy assessment (not available in any 
other CFD codes)

• Integrate MFIX-RAD Plug-In into main MFIX distribution (start mid-June)



• Task-7 “Comprehensive Validation and Benchmark”

• Use non-Gray WSGG PMC to analyze model errors of P1 RTE solver (industrial model) for the 
large gasifier 

• Comparison of PMC-LBL and PMC-ngWSGG results will reveal WSGG model errors

• Such an analysis is only possible with PMC!

Remaining tasks

Submitted paper 
“Study the thermal radiation effects in gas-solid flows with gray and non-gray P1 models 
implemented in MFIX” (Powder Technology)

3. Preparing Project for Next Steps

Second paper 
“Analysis of non-gray WSGG models for multiphase flows through PMC-LBL benchmark 
data”
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