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Agenda

o Introductions
o Project Goal and Objectives

o Accomplishments
= Plant Performance Database Development and Review
- Ash Generator Modifications
- Ash Vaporization/Condensation (FactSage) Modeling
- Deposit Properties (Sintering) Model Development
- Deposit Thermal Properties Predictions
- Modified Heat Transfer Coefficients in IDAES
- Steam Outlet Temperature Predictions in IDAES

o Next Steps
0o Questions
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Opportunity

0 The IDAES platform BoilerHeatExchanger model offers the opportunity to utilize
mechanistic ash prediction tools and experimental information to predict resistance
to heat transfer for boiler heat exchangers in sub-critical and super critical power
plants.

0 The model provides the ability to couple fireside and water/steam side boiler
models for water walls, primary superheater, secondary superheater, finishing
superheater, reheaters and economizers.

o The IDAES computational framework also provides the ability to develop simplified
models that can be run in 1-2 minutes. Developing IDAES simplified models that
can be used in conjunction with the CSPI-CT framework would significantly

enhance the ability to predict the impact of changing plant operating conditions on
plant performances.

I C R O B E XM CSPI-CT — Microbeam’s Combustion System Performance Indices (CSPT) Coal Tracker (CT) 3
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Project Goal

The main goal of the project is the development of a
computer-based tool (model) for use by coal-fired power

plants to predict heat transfer losses in the water wall and
convective pass sections of the boiler.
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Phase I Technical Objectives

o IDAES-AGM Prototype — Technology proof-of-concept to predict plant heat
rate

= Incorporate Coyote Station’s design and operating parameters into the
BoilerHeatExchanger model

= Identify operational databases for testing

= Use data from the AGM model in the BoilerHeatExchanger model to predict heat
rate/plant performance.

o heat transfer resistance for the water walls and convective pass heat exchange surfaces as a function of
changing operating conditions and coal properties

= Compare predicted heat rate to actual measured heat rates.
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Phase II — Technical Objectives

o Further integrate —

= Ash generation, vapor condensation and
aerosol formation (VCA)

——, | Jemanlin = Ash transport sticking and growth (TSG
v Transport/sticking/ I 8
S——— il (DeFoul B = Heat transfer/sintering/thermal
Aol (VCA) | @A i Stack conductivity (HST)
" L T j\'\ HeatTransfer/Sintering . . .
" |l o Implementation and Testing in IDAES platform
&l -\ Wet o Optimize power plant performance testing
Generator " | \ SCR Scrubber . . .
~ ——— o The information from the IDAES platform will
P be used to develop simplified relationships for
\ A " | use in CSPI-CT on-line at power plant
Akibleater Ci Ol | | o Extent application to gasification and

hydrogen production — slag flow and syngas
cooler fouling
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Phase I Project Workflow

Database
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Ash Generator

Model Modifications
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IDAES Model
Testing

Power Plant Fuel
Properties and
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Development

Selected Fuel
Analysis Results
Database

Matching
Operational
Database
Development
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Predictions

Run FactSage on
Selected Fuel
Properties

Compare FactSage
Output and Field
Test Data

Modify ash
Generator Program
(AGM 2.0)

Calculate Viscosity
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Sintering
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Calculate Heat
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with Predicted Heat
Transfer Coefficients

Predict SSH Outlet
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Temp. with Plant
data




Phase I Accomplishments

0 Improved Ash Generator Model (AGM)

0 Integration of AGM with FactSage to predict composition of
entrained ash in different locations

0 Deposit properties at each location
0 Integrated into IDAES boiler model
0 Compared with plant heat transfer

MICROBE KM 10

CCCCCCCCCCCCCCCCC



Section 1 - Database Development

Database
Development

Power Plant Fuel
Properties and Operational
Database Review

Fouling Event Specific
Database Development

Generate Fuel Analysis
Results Database

Operational Database
Development




™
Operational Database Review

Databases Hours Running Datapaoints
A 1691 91052
B 390 19761
C 337 18251
D 601 31587
E 611 28508
F 1294 69549
G 1525 82130
H 354 19167

I 83 4536
J 29 1620
K 905 48653
L 1428 77055
M 59 3239
N 154 8315
0] 371 20033
P 168 9125
Q 169 9350
R 1739 95476
S 164 9072
T 365 20124
u 1899 88107
Vv 1060 58259
W 1217 66986
X 187 10337
Y 338 18529
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Fuel Properties Database Development

Coal Basis
Case | Case Il Baseline D1 D2 D3
Proximate Moisture 34.47 35.25 35.18 35.76 35.48 35.22
\Volatile
Matter 28.75 29.04 28.92 29.14 29.18 28.35
Fixed Carbon 26.47 27.92 28.42 27.87 27.81 28.44
Ash 10.31 7.79 7.48 7.23 7.53 7.99
Ultimate Carbon 62.93 67.44 68.42 68.77 68.06 67.55
Hydrogen 4.25 4.53 4.34 4.36 4.31 4.27
Nitrogen 1.02 0.94 1.02 1 1.01 0.99
Oxygen (diff.) 14.97 13.52 13.49 13.11 13.86 13.77
Sulfur 1.1 1.53 1.19 1.51 1.1 1.08
Calorific Value[BTU/Ib [ 10383 [ 10803 | 10847 10908 | 10780 10706

Ash Analysis - weight% as equivalent oxide (sulfur free)

Si02 4.73 2.60 2.65 2.14 2.92 3.41
AI203 1.59 0.99 1.00 0.81 1.02 1.08
Ti02 0.06 0.05 0.05 0.04 0.05 0.05
Fe203 1.05 1.27 1.07 1.28 0.94 0.92
CaO 1.42 1.58 1.63 1.54 1.52 1.52
MgO 0.43 0.44 0.48 0.48 0.50 0.48
K20 0.21 0.09 0.06 0.08 0.09 0.11
Na20 0.66 0.60 0.38 0.73 0.34 0.27
503 0.00 0.00 0.00 0.00 0.00 0.00
P205 0.01 0.03 0.03 0.02 0.02 0.01
SrO 0.04 0.05 0.04 0.04 0.04 0.04
BaO 0.09 0.09 0.08 0.07 0.07 0.07
MnO?2 0.00 0.00 0.01 0.01 0.01 0.01
Total 10.31 7.79 7.48 7.23 7.53 7.99
B/A Ratio [ o059 [ 109 | 0098 138 | 085 0.73
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Database Development Summary

0 Reviewed over two years of plant operational data

0 Reviewed minute-by-minute fuel properties data to find
coal quality associated with fouling events

0 Developed fuel properties and plant operational database
for IDAES model testing

14
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Section 2 - Ash Generator Model
Modifications

Ash Generator Model Modifications

Obtain AGM 1.0

Predictions

—

—
L

Modify Ash Generator

Run FactSage on Selected
Fuel Properties

Compare FactSage Output
and Field Test Data

Program (AGM 2.0)
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Phase I — Ash Generator Model Modifications

o Microbeam’s ash generator model was modified in
order to account for transformations of different
mineral species as well as slag/fly-ash partitioning in
a cyclone-fired boiler.
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Ash Generator Model 1.0 Output
(D2 Coal)
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™
Output of the Initial AGM for Day 1
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Ash Generator Model Prediction for Day 2 Coal
(Ash PSD and composition at the entrance of the cyclone)
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a. Fly ash composition on an SOs free basis

Ash Generator Model (AGM)
Prediction for Day 2 Coal

(Ash PSD and composition at the cyclone exit)
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Integration of AGM with FactSage

Cl l or Br Catalyzed Gas phase

o "y Reaclons Sulles 0 Impact of temperature

e
i+ < e \ e of the system
_ Vaporization of |5 urface Coatings . . .
inorganics  [p 0 Size-distributed fly ash
it condenses as particulate

T Homagenous
Mg Mucleation

5i0 E—.n )
e e e e is transported through
Components S . / System
ll" .- Affter coalescence,

. ' ‘ eddng naminesl 1 AGM output feeds
'-~.___::;;;;:;'Q:g::;;'ming o Contesence - Te3ou FactSage predictions of

Malten ash swelling

ﬂ and bursting forming Condensed phases
@ o cenospheres and
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Distribution of Bonding Phases in Combustion

Systems

Low Temp Fouling High Temp Fouling Slagging
| I ]l v \'

Predominantly

Sulfate Liquids
é Silicate ~ Liquids
Sulfate
Melting Sulfate Liquid Ash Sintering Ash Fusion
Point Dew Point Temperature Temperature
Deposit/Tube Temperature 1950°F

Deposition Regimes:

1. Dry-sticking regime: no glue
2. Vapor orthermophertically deposited liquid glue
3. Glue produced by heterogenous chemical reactions at vapor-ash interface
4. Ash particle softening on impact
5. Wet limit (sticking coefficient nearly unity)
22
I C O B ] M Modiified after "Maximum Effect of vapor phase chemical
g reactions on cvd-rates and deposition onset conditions
T ELEH N GLODGEES:, IT°'NL. in the absence of interfacial kinetic barriers” Rosner, D.

and Nagarajan, R.



Integration of AGM with FactSage Condensation as f(temperature)
(Overall ash composition)

0.09 Sulfate bonding phases Element
Sulfate and e Si02
0.08 Silicate == Al203
Silicate bonding == Ti02
0.07 bonding  phases Fe203
. phases — oo
% 0.06 === MgO
S K20
S 0.05 Na20
S === S03
§ 0.04 —
7 B =
(18} — ™
< 0.03 " —§

0.02 i T

0.01 m_ e
- ] =T
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™
Section 3 — Deposit Properties

Predictions

Deposit Properties
Predictions

Calculate Viscosity
- Sticking

Calculate Density -
Sintering

Calculate Porosity

Calculate Thermal
Conductivity

Calculate Heat

ICROBE!: | Transfer Resistance 24
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Deposit Properties

o Simplified transport processes used to produce deposits based on particle size — diffusion,
thermophoresis, impaction

o Deposit Growth - Sticking behavior
= High temperature viscosity of particle and surface

= Low temperature processes — sulfate base liquids (fine particle process), condensation and gas
solid reactions

o Sintering processes - Densification
= High temperature - aluminosilicate liquid phase viscosity based
= Low temperature — sulfate liquid phase, molecular cramming due to sulfation fine

o Thermal Conductivity
m  Porosity and density of the deposit

I1C OBEKM 25
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I ——
Deposit and Fouling Properties Manager

(DeFoul Model)

o Highly technical and detailed model incorporating both literature and experimental results
to predict an array of deposit, SSH single tube, and SSH tube bank properties

o Predicts deposit growth based on coal properties and operating conditions

o DeFoul also uses a unique method of modeling deposits by dividing the deposit into radial
sections (quadrants)

o Ultimately can predict whether sootblowing will be required, or recommended

= Allows operators/users to identify optimum operating conditions and see the effect of
adjust coal quality and/or operating conditions on the deposition and fouling in the
convective pass

= Efficient, "smart” sootblowing
o User friendly interface

-
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Section 4 — IDAES Model Testing and Integration

IDAES Model
Testing

Customize IDAES

Boiler Model

L

Run IDAES Model
with Predicted Heat
Transfer Coefficients

L

Predict SSH Outlet

Compare SSH
Outlet Temp. with
Plant data

27



R
Integration into IDAES boiler model

0 Used deposit properties to calculate fouling resistance as a
function of deposit thickness

0 Ran IDAES BoilerHeatExchanger model for secondary
superheater simulating deposit thicknesses for selected
conditions

0 Obtained real plant data for selected conditions in the plant and
compared with predictions

MICROBE KM 8
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Simulated Deposit Properties with DeFoul Model

Flyash Deposit Thicknesses Day/Conditi Fuel B/A Fuel Ash  NOx Setpoint
on Ratio Content
250 S remes s ————- -
P e -
' .
o’ -
. p' L4 - -
L% " Day 1 1.18 6.53 0.45
200 L% T Condition 1 (Average)
Lu” P (D1C1)
~ 7 Pk
E 150 . ¢ Day 1 137 7.23 0.45
~ .? e Condition 2 (High)
0 P . (D1C2)
g ¢ .’
£ 10 P Day 2 0.85 7.53 0.44
[ ’ ’ - - a-y- . . .
o* . Condition1  (Average)
RPN (D2C1)
50 ¢ .7
P " e Day 2 0.85 7.53 0.35
PR Condition3  (Average)
?” (D2C1)
0”
0 5 10 15 20 25 30
Time (hour)

= =D1C1 = =D2C3 = =D2C1 = =DI1C2
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Deposit
Plots
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IDAES model output comparison

o Matched fuel properties to operating conditions = ‘ ;

o Calculated deposit properties using fuel "N, e E
properties — ﬁ -
o0 Ran IDAES to predict outlet steam temperature \ ﬂ .

0 Compared IDAES-predicted with measured | o
plant steam temperature § TEET

[ 1Ff

o Difference between predicted and measured i woe [
plant steam temperature attributed to deposit : m
buildup |
Example for Secondary
Superheater
MICROBEAN ”



Predicted Heat Transfer Coefficient with IDAES SSH Model
(Using Literature Data)

Steel tube

Steel resistance

[ in °C

Initial layer

A

Deposit
140
HTC decreases
from 64 W/m?2-K
to 15 W/m2-K —
76% decrease

IDAES default shell-side resistance

120

100

U. Kleinhans, C. Wieland, F. J.
Frandsen, and H. Spliethoff, “Ash
formation and deposition in coal and
biomass fired combustion systems:
Progress and challenges in the field
of ash particle sticking and rebound
behavior,” Progress in Energy and
Combustion Science, vol. 68, pp. 65—
168, Sep. 2018, doi:
10.1016/j.pecs.2018.02.001.

Steel+Deposit resistance (Kleinhans)
80

Heat Transfer Coefficient, W/m?2-K

" Steel+Deposit+Air resistance (Kleinhans)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Fouling Resistance, K-m?/W
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Integration into IDAES Boiler Model — Results (Using Day 2
Coal Composition)

s —e&— High Load (179 hours)

100 \ —e— High Load (797 hours)
Porous deposit —e— Medium Load (646 hours)

—e— Low Load (781 hours)

High Load (303 hours)

Heat Transfer Coefficient, W/m?-K

80
\ Sintered deposit
Day 2 Coal — B/A Ratio —
60 \ 0.85 (Medium)
Fast-growing
fused deposit
40 \.

0 0.5 1 1.5 2

Deposit Thickness, cm
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SSH Outlet Steam Temperatures Prediction with
IDAES — Effect of Coal Composition

12.2k W Actual Outlet Steam Temp
B IDAES Predicted Outlet Steam Temp

815
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—ea— Net Plant Heat Rate
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SSH Outlet Steam Temperatures Prediction with
IDAES — Effect of Run Time

B Actual Qutlet Steam Temp
B IDAES Predicted Outlet Steam Temp
11k B IDAES+Deposit Predicted Outlet Steam Temp
—a— et Plant Heat Rate

823

820 =
=
gt

10.9k ‘é‘

. 815 =

ar a

[ 1~

2 g10 o

5 10.8k +

O ]

= T

2 805 e
L%}
o

10.7k w
800 2
795

10.6k

790 High Load (179 hours) High Load (303 hours)  High Load (797 hours)

J OB J(M 35

TECH N LOGEES, I'NG.



SSH Outlet Steam Temperatures Prediction with
IDAES — Effect of Load Condition

B Actual Outlet Steam Temp
12k B IDAES Predicted Outlet Steam Temp
B IDAES+Deposit Predicted Outlet Steam Temp
—eo— Net Plant Heat Rate
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Phase I - Conclusions

0 Ash generator model was integrated with a
condensation/reaction model (FactSage) to prediction
the properties of ash during gas cooling.

0 A model that incorporates ash transport, sticking,
growth, and sintering was developed to determine
thermal conductivity of deposited ash.

0 The thermal conductivity of the ash material was
incorporated into the IDAES boiler model to predict
outlet steam temperature for the SSH.

MICROBEAM i




™
Next Steps — Phase II Efforts

o Further integrate —
= Ash generation, vapor condensation and aerosol formation (VCA)
= Ash transport sticking and growth (TSG)
= Heat transfer/sintering/thermal conductivity (HST)

o Implementation and Testing in IDAES platform

Optimize power plant performance testing

o The information from the IDAES platform will be used to develop
simplified relationships for use in CSPI-CT on-line at power plant

0 Extent application to gasification and hydrogen production — slag flow
and syngas cooler fouling

O
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Expand to
hydrogen/
biomass

Update
databases

Phase II
Effort

Integrate
live onsite
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Commercial Product

0 IDAES model will be included in Microbeam’s Combustion System Performance
Indices - CoalTracker program.

o This will give an opportunity to the plant operators and engineers to run different
scenarios to predict the effect of changing operational conditions on heat transfer
and plant efficiency.

0o On-premise license and cloud-based application

0 Potential Clients

Coal-fired Power Plants

Gasifiers (Syngas/Hydrogen/Ammonia)

Biomass-fired systems

Waste-fired Systems

Co-firing Applications

I ROBEXM 0
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Questions

Shuchita Patwardhan, Project Manager
Microbeam Technologies Inc.
Email : shuchita@microbeam.com

Phone: (701)757-6202
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