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Project Objective

The overall objective of this project is to develop, test, and validate a general 
drag model for multiphase flows in assemblies of non-spherical particles by a 
physics-informed deep machine learning (PIDML) approach using artificial 
neural network (ANN). 



Project Status
Project Timeline 



Technical Background/Motivation for the Project

Most of existing work considers at most two features (i.e., Reynolds & 
sphericity)

Drag coefficient also depends on multiple other features such as aspect ratio, 
lengthwise sphericity, crosswise sphericity, density ratio, etc.

Traditional correlation-based methods have drawbacks:

● Limited number of features
● Limited feature range
● Limited to specific experimental conditions

Neural network can efficiently consider the effects of all these features and 
predict drag coefficient with high accuracy.
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Regular vs. Irregular Shaped Particles

Regular shaped particles:

● A particle of geometric parameters 
such as volume and surface area 
that can be mathematically 
determined

Irregular shaped particles:

● An arbitrary random particle 
whose geometric parameters 
cannot be precisely calculated

Regular-shaped Particles

Irregular-shaped Particles1

1Dioguardi, F., D. Mele, and P. Dellino. "A new one-equation model of fluid drag for irregularly 
shaped particles valid over a wide range of Reynolds number." Journal of Geophysical Research: 
Solid Earth 123, no. 1 (2018): 144-156.
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Data Collected So Far

Digitalized several more papers/reports 
(> 4K data points)

● Created a combined spreadsheet with 
data of drag coefficients at identified 
features

● Performed preliminary data analysis of 
feature importance and feature 
correlation

● Conducted a systematic experimental 
analysis on various data configurations

Irregular-shaped Particles (Total: 1894)
* Particle shape and settling velocity are retrieved from David, 2017. Other parameters including Re and 
Cd are calculated ourselves to be consistant with other data 7

Regular-shaped Particles (Total: 2277)



Feature Generation
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Data Challenges

Learning from limited data sets
• The model doesn’t generalize well 
from our training set to unseen set, 
resulting in overfitting

Extreme values 
• Results in longer training times
• Less accurate models
• Can spoil and mislead the model 
training process
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CD of Particles with Different Shapes
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Yow et al., 2005 Chien, 1994 Hölzer & Sommerfeld, 2008

Correlations-Based Drag Model
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where:

Haider & Levenspiel, 1989



DNN vs. Machine Learning

● Preliminary study and results 
demonstrate DL/ML models can 
achieve better performance

● The more data we can feed the 
model to learn, the better result we 
obtain

Data: Tran-Cong, 2004; Song, 2017; 
Kale, 1987; Yow et al, 2005
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DNN plus Additional Regularization Methods

● Noise Augmentation
● Dropout Layer
● Mean Absolute Error 

(MAE) Loss Function
● Exponential Linear Unit 

(ELU) Activation

Data: Tran-Cong, 2004; 
Song, 2017; Kale, 1987; 
Chen & Li, 2020

Refining/Adjusting the DNN algorithm through model regularization and 
generalization
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Experimental Setup

Performance metrics

Three-Fold Cross Validation

● Assessing how well the ML model will 
generalize to an independent data set
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Performance Summary
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• Conventional methods may 
have lower RMSE values, and 
they are better at accounting 
for extreme cases 

• However, higher MAE values 
demonstrates the it doesn’t 
generalize well to unseen data

• Our proposed DNN model 
can predict more robust results 
compared to traditional 
methods using MAE metric



Proposed DNN + Correlation-Based Methods

Stacked 
Generalization -

Learn how to combine 
the predictions from 
traditional correlation 
with proposed DNN

Data: Latest database 
compiled from 30+ 
publications
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Performance Summary
Data Configuration Key:

- (R) Regular Particles Experimental Drag Data
- (I) Irregular Particles Experimental Drag Data
- (C) Regular Particles Correlation-based Drag Data
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Current Project Status

Proposed DNN vs. 
Conventional Drag Model

Performance comparison for 
particles of low sphericities 
demonstrate the capability of 
the proposed DNN
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Conclusion

In this work, we have used datasets available in the literature, 4171 samples from 
30+ papers, to develop a general drag coefficient model.

Within the investigated parameter range, it is found:

● An improved drag coefficient model was developed by considering more 
features such as, aspect ratio, lengthwise sphericity, crosswise sphericity, 
and density ratio.

● DNN model with Stack Generalization ensemble can predict better results 
compared to traditional methods using RMSE and MAE metric.

● The proposed Stack Generalization technique is proven to achieve better 
performance, especially when irregular-shaped and low-sphericity particles 
are included in the dataset.
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Plan for the Next Few Months

● Continue to search for more data in the literature and expand the database.

● Perform synthetic data generation to further address the issue of missing 
values.

● Conduct further experiments to explore the combination of traditional 
correlation-based methods with DNN model in an ensemble approach.

● Apply more physics-informed methods to the DNN model to improve the 
performance.
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