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Build an advanced collaborative framework specifically
targeted towards CFD on the most advanced HPC/Al hardware

with native support for Al and ML algorithms

Increasing computational speed without sacrificing accuracy

will directly supports:

 Modernization of existing coal plants

 development of coal plants of the future

 Reduction of the cost of carbon capture, utilization, and storage (CCUS)
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M X + TensorFlow

Can we write MFiX in TensorFlow so that we can create a single, unified framework for
doing both CFD and Al/ML on emerging hardware designed for Al/ML?

e TensorFlow is the most used Al/ML framework

 TensorFlow has a simple APl and allows for both surface level hardware agnostic

coding and the ability to deeply optimize hardware specific implementations if
needed

 Get speed boosts from Al/ML hardware
* Get speed boost from Al/ML accelerated algorithms
Simplify implementation of Al/ML models in MFiX

orFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.
is not endorsed by or affiliated with Google, NETL is sing TensorFlow for its own research in accordance
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Where are we now?
* In Third Full Year of Development, Second year in CARD

« On schedule with Milestones

« EY20.4.A A demonstration of a multidevice linear solver relative to the existing single
device solver (9/30/2020)

« EY20.4.B A demonstration of a granular simulations using the TensorFlow based
solver. (9/30/2020)

« EY21.4.C A demonstration of a simple fluid bed simulation in the TensorFlow based
solver. (3/30/2020)
 Have a functioning, coupled MP-PIC code implemented in TensorFlow

« Solves all transport equations on available devices followed by a multi-device solve
of continuity

 Ready to accept Al/ML models
« Does not yet support energy, species, or reactions
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Verification Against MFiX Classic

Test problem: fluidized bed
Initialization
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v (constant velocity)

Solution

Initial particle

Number of cells: 137,924
Number of parcels : 2,983,447
Constant density and viscosity
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Verification Against MFiX Classic
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WIFX
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Performance Comparison
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Time To Solution
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Implicit Solids Coupling

160 cores

760 cores 880 cores 1000 cores
280 cores 400 cores 520 cores 640 cores ) .

o

A

e
o

< <>- &
\ g

Cell count (Millions)

—=—MFiX Al on A100s 234[12] on dgxal00_80g_2tb ——MFIX Classic on Joule 2.0
——MFiX Al on A100s 234[1234] on dgxal00_80g 2tb

%, U.S. DEPARTMENT OF

) ENERGY




Current Status

Cut Cell

Uniform grid
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*Source: Implementation of Cartesian Cut-Cell Technique into the Multiphase Flow Solver MFIX, Jeff Dietiker, April 22, 2009
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Size 462 cm?
Cores 850,000
Transistors 2.6T
Memory Band
Width 20 PB/s
Interconnect
Bandwidth 220 Pb/s
Memory 40GB
Power 20kW
cerebras.net
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Code Computation On a

Fast Stencil-
Wafer—Scale Processor

Kamil Rocki”s Dirk Van Essendem‘. Tiya Sharapov”, Robert Schreiber” Michael M
Portnoy”, Jean Francois Dietiker'?, Madhava Syamlal’ and

Vladimir Kibardin®, Andrey
a, USA

+ Cercbras Systems Inc.. Los Altos. Californi
Email: (ksmil.michael}@cemxﬁ.nct

1 National Encrey Technology Laboratom: Morgantown, West Virginia, U
Email: dirk.vunssﬂr&l&@ndl.doc.gov
4 Leidos Research Support Team. Pittsburgh. Pennsylvania, USA
Email: jcm.d'lcliktr@mll.dot.gw
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Cerebras WSE + MFiX Al
Host

Vector Code
gradP = (P — tf.gather(P, IPJK))*odX

WSE API
vec_minus_dir(4,P,PWV1)
vec_mul_dir(3,WV1,o0dX, WV1)

Command Vector
{2.0,
2.0,4.0,1.0,1.0,5.0,
3.0,3.0,5.0, 3.0, 5.0}
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First Step Towards CFD: Scalar Diffusion
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Market Benefits/Assessment

» While CFD is very powerful design tool, the extremely high computational cost limits its
practical application
« 9x improvement on PIC, up to 4x on fluid with current gen hardware with TensorFlow
« >200x on emerging hardware
« Makes CFD for optimization and UQ tractable
« Could open up new application areas in real time or faster than real time CFD

Technology to Market Plan

« Make incremental releases on the existing MFiX platform so existing MFIX users can pick
up and run the tools for their FE supported work

 Existing/Potential Collaborators:

Industrial relationships with NVIDIA and Cerebras

Chris Guenther with TINEP FWP leveraging framework

FOA 2193 - ML models for non-spherical drag

Partnering with SAMI as MFiX Al is NETL's first Al enabled CFD code
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Important Concepts and Next Steps

« The most important thing that this project brings is very high levels of
computational speed and efficiency without sacrificing accuracy.
*  Means more work gets done in less time and at lower costs

« Directly translates to reduced uncertainty, design time, cost, and risk for FE
applications

* Project next steps:

« Funding constraints limited development. Most development is continuing under
Sensors and Controls FWP but at a much slower pace
« A shift to Cerebras Development in FY21 has been brought forward.
« The goalis to do CFD on the Wafer Scale Engine
« 200x+ speed gains
« 1500x+ energy savings

» First step is to build a minimal linear algebra library that can be applied to solve simple
CFD problems

* Wil be linked back to MFiX Al and be released as open source
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Distributed Computing
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Distributed Computing

AmgX Initialization

(Slngle Mutli, Block, Block Global)
Initialize AmgX and memspace
Create matrix, vectors, & solver
Bind and upload init vectors
Set up the solver

MFiX a

AmgX Cleanup

Destroy matrix, vectors, solver
Shutdown AmgX

Free memory

TensorFlow Custom Operators
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Distributed Computing

AmgX BiCgStab Strong Scaling. 64 Bit.
20 iterations. 2-128 GPUs. 52-820 CPUs.

- 128x128x128 64 CPU
| —#— 128x128x128 64 GPU
| —+— 370x370x370 64 MFiX
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Time per BiCgStab Iteration (s)
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AmgX BiCgStab Strong Scaling. 64 Bit.
20 iterations. 16-128 GPUs. 52-820 CPUs.

-8 370x370x370 64 CPU
-8 370x370x370 64 GPU
—+— 370x370x370 64 MFiX

10°% 106
nCells Per GPU or CPU

Nodes: 2 x Intel Xeon Gold 6148, 2 x NVIDIA P100 PCle, Intel Omnipath 100Gb
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