Develop and test an integrated Acid Mine Drainage treatment and REE/CM extraction plant

USDOE Project DE FE00 31834

Project Leaders:

Paul Ziemkiewicz, Jim Constant, Harry Finklea, Lance Lin, David Hoffman, John Quaranta,

Aaron Noble,
Tom Larochelle

West Virginia University

NETL Spring Program Review
25 May 2021

Water Research Institute
Acknowledgment: "This material is based upon work supported by the Department of Energy Award Number DE-FE0031834

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
PARTICIPANTS

Research team
West Virginia University
• Paul Ziemkiewicz, PhD
• Drew Bucy, Project Manager
• Jim Constant, Plant Manager
• David Hoffman, Chemist
• Harry Finklea, PhD: Chemistry
• Lance Lin, PhD, CEE
• John Quaranta, PhD, CEE

Virginia Tech
Aaron Noble, PhD, Mineral Process Engineering
• Tom Larochelle

External partners
• West Virginia Dept. of Environmental Protection
• Rockwell Automation Inc.
• TenCate Corporation
ACID MINE DRAINAGE: AMD

1. $\text{H}_2\text{SO}_4$ LEACHES REE FROM SHALE
2. REE PRECIPITATE WITH $\text{Fe(OH)}_3$

Pyrite + $\text{O}_2$ + $\text{H}_2\text{O}$ = $\text{Fe}^{2+}$ + $\text{H}_2\text{SO}_4$

$\text{Fe}^{2+}$ + $\text{O}_2$ + $\text{OH}^-$ = $\text{Fe(OH)}_3$
AMD TREATMENT

1. RAW AMD = water + major ions (Ss) + TREE

2. Lime for pH adjustment

3. AMD treatment: lime mixing/oxidation

4. AMD sludge: precipitation of major ions (Ss) + TREE

5. Treated water for surface discharge
Acid mine drainage:
$pH < 5$, elemental distribution is consistent
Scaleup to at source REE recovery

• Mobile extraction unit operated at WVDEP’s Omega AMD treatment plant
• Field concentrates averaged 0.5% TREE
• Feedstock was supplied to SX plant at WVU
Conceptual supply chain: Concentrates move to central processing facilities

Potential source districts:
A: Northern/Central APP
B: Southern APP/Illinois basin
C: Southern Rockies metal belt
D: Sierra metal belt
E: Northern Rockies metal belt
F: Iron range
Recovery strategy 1: Integrated AMD/REE/CM plant

Conventional AMD treatment

- Lime
- AMD
- mixer A
- clarifier B
- clarifier A
- reject
- in-mine disposal

REE/CM Recovery and refining

- *PC = preconcentrate
- mixer B
- clarifier C
- PC*
- dewatering
- P C
- ALSX
- reject
- REE/CM
- >80%
- Treated water

West Virginia University
Water Research Institute
ETD67: Mt. Storm Pilot Plant
AMD treatment: Up to 1,000 gpm, Production rate ~ 1 tpy each: TREE, Cobalt, Nickel.
Recent Developments: Upstream Processing

- **HPC**: Hydraulic pre-concentrate
  - Grade improvement
  - Dewatering for transport
- **High volume production/recovery in the lab**
  - 1:10 scale clarifier
  - Processed 10,000 gal of site A34 AMD
- **PLS**: Pregnant leach solution-feedstock to solvent extraction
  - Grade improvement
  - Removal of deleterious gangue
- **A34 Plant construction**
  - Building delivery by end of August 2021
  - Commission by early Fall 2021
Scaleup to the A34 plant

1:10 scale clarifier in the lab

Floc reporting to clarifier sump
Recovery Strategy 2. Remote sites

1. Generate pre-concentrate (brown floc)
2. Passively dewater to 85% solids (brick)
3. Transport to a central processing facility
4. Convert it to high-grade PLS (green), then MREO

Pre-conc. TREE: 0.5%
Brick TREE: 0.5-5.0%
PLS TREE: 100-1,800 mg/L

MREO TREE: 90-99%
Recent PLS production: 1,784 mg TREE/L, 54% HREE, almost no Al, Si
Acid Mine Drainage as an REE/CM Feedstock

1. Opportunity: Low cost, already permitted sites, environmentally beneficial
2. Resource Assessment: Northern/Central Appalachian Coal
   1. AMD: 800 tpy
   2. AMD treatment sludge: 350 t in-place
3. Our Pilot Plant:
   1. Bench scale pilot Installed 2018
   2. Field scale pilot under construction, Building delivery August 2021
      1. Production rate: ~1 tpy each: TREE, Cobalt, Nickel.
      2. 27 tpy Manganese: maybe, economic assessment underway
4. Potential Market Size:
   1. U.S. market: 20,000 t REE/year
   2. U.S. defense industry: 1,000 t REE/year
5. Resulting Technology
   1. 1 U.S. patent issued
   2. 1 Active provisional patent
6. Greatest Achievement from Pilot:
   1. Continuous process flowsheet
   2. High grade MREO product
7. Greatest Challenge: Develop domestic supply chain

REE Product: 99% purity
Estimated MREO production rate at A34:

Similar levels of:

a. cobalt, nickel
b. 27x manganese

<table>
<thead>
<tr>
<th></th>
<th>Original prediction</th>
<th>Current prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q AMD</td>
<td>500 gpm</td>
<td>500 gpm</td>
</tr>
<tr>
<td>Q AMD</td>
<td>1892.5 L/m</td>
<td>1893 L/m</td>
</tr>
<tr>
<td>TREE</td>
<td>1 mg/L</td>
<td>HPC</td>
</tr>
<tr>
<td>TREE yield</td>
<td>2.7 kg/day</td>
<td>709 kg/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPC grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5% TREE</td>
</tr>
<tr>
<td>TREE yield</td>
<td>992.1 kg MREO/year</td>
<td>1,293.1 kg MREO/year</td>
</tr>
</tbody>
</table>
Conceptual Study – Capital Cost Estimate*

* The comparison project economics are based on old, much higher REE prices. Our analysis uses current, much lower values. Still, our economics are favorable.

**Capital Cost Comparison for Complete Facility**

Our project = ~$114/(kg/yr REO + Co)
Conceptual Study – Operating Cost Estimate*

* The comparison project economics are based on old, much higher REE prices. Our analysis uses current, much lower values. Still, our economics are favorable.

Operating Cost Comparison for Complete Facility

Our project = ~$22/(kg/yr REO + Co)