Recovery of Rare Earth Elements from Coal Byproducts: Characterization and Laboratory-Scale Separation Tests

by

Roe-Hoan Yoon and Aaron Noble
Center for Advanced Separation Technologies
Virginia Polytechnic Institute & State University
Blacksburg, Virginia, 24061

May 26, 2021
12:00-12:30 pm, Wednesday
Objectives

- To overcome the challenges in extracting rare earth elements (REEs) from coal byproducts:
 - Low concentration
 - Low separation efficiency

- Approach
 - Extract REEs from the kaolinite present in fine coal refuse by ion-exchange leaching.
 - Extract REEs from the monazite co-present in the refuse to increase the recovery and separation efficiency.
REEs in Coal

Seredin and Dai (2012)

\[C_{out} = \frac{(Nd + Eu + Tb + Dy + Er)}{(Ce + Ho + Tm + Yb)} \times \frac{\sum REY}{\sum REY} \]

Ekmann and Skone (2013)
REEs are in mineral matter
- 80% from kaolinite

REEs partition to kaolinite

USGS Coal Data Base
Bryan *et al.* (2015)
A Model Based on X-Ray Absorption Studies

Boris et al. (Nature, 2020)

• Basal surfaces: permanent surface charge (outer-sphere complexes)
• Edge surfaces: pH-dependent surface charge (inner-sphere complexes)
Laser-Ablation ICP-MS Analysis of a Single Kaolinite Particle

Before and After Ammonium Sulfate Treatment (Mukai et al., Nature, 2020)

<table>
<thead>
<tr>
<th>Kaolinitic particle01</th>
<th>Before treatment</th>
<th>After treatment</th>
<th>Desorption ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (ppm)</td>
<td>74.3</td>
<td>23.6</td>
<td>68.2</td>
</tr>
<tr>
<td>La (ppm)</td>
<td>61.4</td>
<td>16.2</td>
<td>73.6</td>
</tr>
<tr>
<td>Ce (ppm)</td>
<td>629</td>
<td>324</td>
<td>48.5</td>
</tr>
<tr>
<td>Pr (ppm)</td>
<td>24.1</td>
<td>7.30</td>
<td>69.8</td>
</tr>
<tr>
<td>Nd (ppm)</td>
<td>97.1</td>
<td>32.4</td>
<td>66.6</td>
</tr>
<tr>
<td>Sm (ppm)</td>
<td>28.2</td>
<td>9.15</td>
<td>67.6</td>
</tr>
<tr>
<td>Eu (ppm)</td>
<td>5.41</td>
<td>2.00</td>
<td>63.1</td>
</tr>
<tr>
<td>Gd (ppm)</td>
<td>26.3</td>
<td>8.08</td>
<td>69.2</td>
</tr>
<tr>
<td>Tb (ppm)</td>
<td>4.04</td>
<td>1.45</td>
<td>64.2</td>
</tr>
<tr>
<td>Dy (ppm)</td>
<td>23.1</td>
<td>10.2</td>
<td>55.6</td>
</tr>
<tr>
<td>Ho (ppm)</td>
<td>4.04</td>
<td>1.64</td>
<td>59.5</td>
</tr>
<tr>
<td>Er (ppm)</td>
<td>11.7</td>
<td>4.88</td>
<td>58.4</td>
</tr>
<tr>
<td>Tm (ppm)</td>
<td>1.72</td>
<td>0.74</td>
<td>56.9</td>
</tr>
<tr>
<td>Yb (ppm)</td>
<td>12.4</td>
<td>5.73</td>
<td>53.9</td>
</tr>
<tr>
<td>Lu (ppm)</td>
<td>1.68</td>
<td>0.93</td>
<td>45.0</td>
</tr>
<tr>
<td>LREE (ppm)</td>
<td>845</td>
<td>391</td>
<td>53.7</td>
</tr>
<tr>
<td>LREEa (ppm)</td>
<td>216</td>
<td>67.1</td>
<td>69.0</td>
</tr>
<tr>
<td>HREE (ppm)</td>
<td>85.0</td>
<td>33.7</td>
<td>60.4</td>
</tr>
<tr>
<td>REE (ppm)</td>
<td>985</td>
<td>448</td>
<td>54.5</td>
</tr>
<tr>
<td>REEa (ppm)</td>
<td>301</td>
<td>101</td>
<td>66.6</td>
</tr>
<tr>
<td>REY (ppm)</td>
<td>1059</td>
<td>472</td>
<td>55.4</td>
</tr>
</tbody>
</table>

Chinese IAC industry practice
- 40-70% recovery
- 2,000-4,000 REE ores

(Schultze et al., 2017)
Formation and Passivation of Ion-adsorption Clays

- **Weathering of granite**
 - **Feldspar (>65%)**
 - *by meteoric water*

 \[
 2\text{KAlSi}_3\text{O}_8 + 2\text{CO}_2 + \text{H}_2\text{O} \rightarrow \\
 \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 + 4\text{K}^+ + 4\text{HCO}_3^- + 4\text{SiO}_2
 \]

 - **REE-bearing accessory minerals**
 - *Liberate Ln$^{3+}$ ions into solution*
 - *Adsorb onto kaolinite surface*
 - *Can be passivated by phosphorous*

Li et al., 2017)

Bryan et al., 2015)
IACs in the U.S.
Foley and Ayuso (2015)

- Stewartsville

- Heling, China
Effect of Phosphor on Ion-Exchange Leaching

- Sanematsu et al. (2015)
- Bern et al. (2017)

PER: ion-exchangeable rare earths

Phosphate minerals scavenge Ln\(^{3+}\) ions from solution during IAC formation.
P content and/or P/TREE ratio may be used to identify promising feedstocks.
- Eastern coals, P/TREE = 1 to 4
- Western coals, P/TREE > 10

Some Appalachian coal seams have nearly negligible P content.

Further investigations will be useful.
Ion-exchange Leaching of La$^{3+}$ from Kaolinite
In the Absence of Phosphate

95% of La$^{3+}$ ions have been removed.
Ion-exchange Leaching of La$^{3+}$ from Kaolinite
In the Presence of Phosphate

18% of La$^{3+}$ ions have been removed.
Passivation of an IAC Sample from South China by Phosphate

![Graph showing recovery percentage for various elements (TREE, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U) under different conditions: IACs+P+AS pH4 and IACs+AS pH4. Recovery percentages vary across elements, with some showing higher recovery under specific conditions.]
Ion-exchange Leaching of Upper Kittanning Coal, PA
Rozelle et al. (2016)

- Sample A
 - Top of the coal seam

- Sample B
 - Just below Sample A

595x10 µm sample in 1 M (NH₄)₂SO₄
1 hr contact time
Rare Earth Minerals in Appalachian Coal

HHS Product
REE Recovery from Fine Coal Refuse: New Approach

Fine Coal Refuse

HHS PROCESS for Carbon

Low-Ash Dry Coal

Mineral Matter

HHS PROCESS for REMs

ION-EXCHANGE LEACHING (I) for Clay

Reject

IAC

REM

Monazite Conc. from Beach Sands

ION-EXCHANGE LEACHING (II) for REMs

REEs in Solution

Mixed Rare Earth

Oxalic Acid/Heat

Reject
Hydrophobic-Hydrophilic Separation (HHS) Process

- No lower particle size limit
- No entrainment
- Dry products

- Construction in progress for coal recovery
Monazite Recovery by HHS

- Preliminary test results
 - *Oil washing*

<table>
<thead>
<tr>
<th>Test</th>
<th>Particle Size</th>
<th>Conc Grade, % (Total)</th>
<th>Overall Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHS 4</td>
<td>5.0</td>
<td>0.55%</td>
<td>6.6%</td>
</tr>
<tr>
<td>HHS 8</td>
<td>3.0</td>
<td>0.29%</td>
<td>1%</td>
</tr>
</tbody>
</table>

 - *Water washing*

<table>
<thead>
<tr>
<th>Test</th>
<th>Particle Size</th>
<th>Conc Grade, % (Total)</th>
<th>Conc Grade, % (Dry Ash Basis)</th>
<th>Overall Recovery, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHS 4</td>
<td>2.2</td>
<td>6.34%</td>
<td>56.14%</td>
<td>14.2%</td>
</tr>
<tr>
<td>HHS 8</td>
<td>3.0</td>
<td>3.73%</td>
<td>-</td>
<td>4.54%</td>
</tr>
</tbody>
</table>

- Rozelle *et al.* (2019)
 - *DOE report*
Ion-Exchange Leaching of Monazite

- Solubility diagram

- Leaching experiment
 - 50% NaOH, 80°C, 24 hrs, ion-exchange leaching at pH 4

- Model
 - Dissolution of Ln(OH)₄⁺ by H⁺ ions
 - Adsorption of SO₄²⁻ ions via electrostatic force
 - Displacement of Ln⁺⁺ by NH₄⁺ ions

Ion-Exchange Leaching of Monazite
Ion-Exchange vs. Acid Leaching

Kinetics

Ion-Exchange Leaching

Acid Leaching
8. Clay deposit in Stewartsville, VA
10. (yellow) Atlantic coastal plain, monazite from beach sands
Ion-exchange Leaching of IAC
(Chelating Agents to Solubilize at Neutral pH)

$[\text{La}^{3+}]_{\text{TOT}} = 10.00 \, \mu \text{M}$

$[\text{PO}_4^{3-}]_{\text{TOT}} = 10.00 \, \mu \text{M}$

Dissolution of La(PO_4)$_3$(s), e.g., monazite and apatite, is thermodynamically possible at neutral pH.

Ethylenediaminetetra(methyleneephosphonic acid) (EDTPO)

$t = 25^\circ \text{C}$
A small amount of NaOH is need due to the co-presence of monazite and passivated IACs in our sample.
Effect of Chelating Agents

- In presence of small amount of LaPO₄(s)
 - 10 µM La³⁺
 - 10 µM PO₄³⁻

- In presence of large amount of LaPO₄(s)
 - 10 µM La³⁺
 - 0.1 mM PO₄³⁻

Remove monazite prior to ion-exchange leaching of passivated IACs!
Summary

- Fine coal refuse has two REE-bearing minerals.
 - Rare earth minerals (monazite)
 - Residual accessory minerals
 - Ion-adsorption clays (kaolinite/halloysite)
 - Passivated by phosphate ions from solution

- Developed an ion-exchange leaching process for monazite.
 - Requires mild operating conditions

- HHS process may be used to increase the contained values and thereby overcome the problems associated with:
 - low REE+Y grades in coal byproducts
 - passivating effects of phosphates
Acknowledgement

- This material is based upon work supported by the Department of Energy Award Number DE-FE0029900.

- Disclaimer:

 "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."