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Objectives

O To overcome the challenges in extracting rare earth elements (REESs)
from coal byproducts:

= Low concentration
= Low separation efficiency

d Approach

= Extract REEs from the kaolinite present in fine coal refuse by ion-exchange
leaching.

= Extract REEs from the monazite co-present in the refuse to increase the
recovery and separation efficiency.



REEs in Coal

Seredin and Dai (2012)
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USGS Coal Data Base

Bryan ef al. (2015)
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A Model Based on X-Ray
Absorption Studies

Boris ef al. (Nature, 2020)
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Laser-Ablation ICP-MS
Analysis of a Single
Kaolinite Particle

Before and After Ammonium
Sulfate Treatment
(Mukai ef al., Nature, 2020)

Chinese IAC industry practice
* 40-70% recovery
* 2,000-4,000 REE ores

(Schultze et al., 2017)

Y (ppm) 74.3 23.6 68.2
La (ppm) 61.4 16.2 73.6
Ce (ppm) 629 324 48.5
Pr (ppm) 241 7.30 69.8
Nd (ppm) 97.1 324 66.6
Sm (ppm) 282 9.15 67.6
Eu (ppm) 5.41 2.00 63.1
Gd (ppm) 26.3 8.08 69.2
Tb (ppm) 4.04 1.45 64.2
Dy (ppm) 23.1 10.2 55.6
Ho (ppm) 4.04 1.64 59.5
Er (ppm) 11.7 4.88 58.4
Tm (ppm) 1.72 0.74 56.9
Yb (ppm) 12.4 5.73 53.9
Lu (ppm) 1.68 0.93 45.0
LREE (ppm) 845 391 53.7
LREE® (ppm) | 216 67.1 69.0
HREE (ppm) | 85.0 33.7 60.4
REE (ppm) 985 448 54.5
REE? (ppm) 301 101 66.6
REY (ppm) 1059 472 55.4




Depth

Formation and Passivation of
lon-adsorption Clays

ad Weathering of granite

Feldspar (>65%)

- by meteoric water

2KAISi,0, +2CO, + H,0 —
ALSi,0,(OH), + 4K* +4HCO; +4SiO,

REE-bearing accessory minerals
- Liberate Ln3* ions into solution

- Adsorb onto kaolinite surface

- Can be passivated by phosphorous

REE-concentraiton

(A) Humic layer (0-2m)

REEs Enrichment Zone

(B) Completely weathered layer (5-10m)

(C) Strongly weathered layer (2-3m)

(D) Weathering front (5-10m)
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(E) Unweathered rock
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IACs in the U.S.

Foley and Ayuso (2015)
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Effect of Phosphor on
lon-Exchange Leaching

O Sanematsu et al. (2015) O Bernetal. (2017)
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Phosphate minerals scavenge Ln3* ions

PER: ion-exchangeable rare earths from solution during IAC formation.



Phosphate in US Coal

0 P content and/or P/TREE ratio
: : ey n
may be used to identify promising ol
feedstocks. 50
= Eastern coals, P/TREE = 1 to 4 =
£ \6\- ,'I Southern A
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O Further investigations will be
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XPS Intensity

lon-exchange Leaching of La3*

from Kaolinite
In the Absence of Phosphate

La

la3ds, —

Surface-adsorbed La3*

lon-exchange removes La3*
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NH,* NH;* nu,s NH T
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95% of La3* ions have been removed.
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XPS Intensity (a.u.)

lon-exchange Leaching of La3*
from Kaolinite

In the Presence of Phosphate

XPS Tracks Tightly-bound La3*
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XPS Tracks Phosphate Deposition

P 2p
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18% of La3*ions have been removed.
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Passivation of an IAC Sample from

100

80

Recovery %

40

20

0

South China by Phosphate

IACS+P+AS pH4
IACS+AS pH4

«?gj’/ 12 2 08 O o @ d K0 O O €K N W g

13



lon-exchange Leaching of Upper
Kittanning Coal, PA

Rozelle ef al. (2016)

0 Sample A
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Rare Earth Minerals in
Appalachian Coal

Monazite
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REE Recovery from
Fine Coal Refuse: New Approach

Fine Coal
Refuse
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Hydrophobic-Hydrophilic Separation
(HHS) Process

Yoon, R.-H., US Patent 9,518,241 (2016 )

Feed Dry
Slurry Concentrate

Waste Waste

Slurry Slurry
No lower particle size limit *  Construction in progress for coal recovery
No entrainment
Dry products
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Monazite Recovery by HHS

O Preliminary test results

— QOil washing
Test Particle Conc Overall
Size Grade, % Recovery,
(Total) %
HHS 4 5.0 0.55% 6.6%
HHS 8 3.0 0.29% 1%
- Water washing
Test Particle Conc Conc Grade, Overall
Size Grade, % % (Dry Ash  Recovery,
(Total) Basis) %
HHS 4 2.2 6.34% 56.14% 14.2%
HHS 8 3.0 3.73% - 4.54%

0 Rozelle et al. (2019)

Relative Production Cost/ Ton Product

— Leonardo Technologies, Inc.
- DOE report

1,000 2,000 3,000 4,000
Feedstock Assay (Head Grade), ppm REE
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lon-Exchange Leaching
of Monazite

O Solubility diagram
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A US Rare Earth Resources Map

USGS Circular 1454, April 2019
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Log [EDTPO8-}ror

lon-exchange Leaching of IAC

(Chelating Agents to Solubilize at Neutral pH)

[La3*lror= 10.00 uM [PO43Tror = 10.00 pM
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Dissolution of La(PO,)(s), e.g., monazite and apatite, is
thermodynamically possible at neutral pH. 22




lon-Exchange Leaching of IACs

IAC from Leer thickener underflow 2 Russellton pond fines
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A small amount of NaOH is need due to the co-presence of monazite and passivated IACs in our sample.
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Effect of Chelating Agents

O In presence of small amount of LaPQO,(s)

O In presence of large amount of LaPO,(s)
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Remove monazite prior to ion-exchange

leaching of passivated IACs!
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Summary

a Fine coal refuse has two REE-bearing minerals.
= Rare earth minerals (monazite)
- Residual accessory minerals
= lon-adsorption clays (kaolinite/halloysite)
- Passivated by phosphate ions from solution

0 Developed an ion-exchange leaching process for monazite.
= Requires mild operating conditions

O HHS process may be used to increase the contained values and
thereby overcome the problems associated with:
= low REE+Y grades in coal byproducts
= passivating effects of phosphates
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