Combustion Performance and Emissions Optimization through Integration of Miniaturized High-Temperature Multi-Process Monitoring System

Award No. DE-FE0031680

May 20, 2021
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
No proprietary information is included in this presentation
Agenda

- Project Overview
- Technical Discussion
 - R&D in Pilot-scale Testing Facility
 - Demonstration at Leland Olds Station
 - Summary
- Plan
Reaction Engineering International

- Founded 1990 with Strong University and Specialist Affiliations
- Managed more than 40 government R&D projects in the past 15 years
- Has both management experience and technical expertise in the combustion and gasification related R&D programs
- Expertise
 - Combustion, Gasification, Fuel Conversion & Pollutant Emissions
 - Unique, Proprietary Modeling Capabilities & Tools
 - Laboratory and Field Testing
 - Specialized Equipment & Controls
Project Objectives

- Develop and demonstrate a miniaturized high temperature multi-process* monitoring system (mMPMS) that can provide a real-time indication of boiler condition in a lignite-fired full-scale boiler.

- Develop and implement logic algorithms for the plant DCS to improve boiler energy efficiency, soot blowing, and NOx emissions by automated control of boiler operations.

*metal wastage, heat flux, metal surface temperature, ash deposit thickness and ash deposition rate.
Technical Approach

Pilot-scale studies

Lab-scale Development

Full-scale demonstration

Modeling

Impacts of Deposit Thickness on Metal Temperature

Ts - sensor
Tw - wall

Lab-scale Development

Full-scale demonstration

Pilot-scale studies
Leveraging REI’s Previous Works

- Electrochemical metal wastage sensing system has been applied to
 - low and high temperature zones of the boiler
 - waste-to-energy system
 - material testing for ultra-supercritical steam condition and oxy-firing combustion

- EN-based system provides high sensitivity, real-time, on-line monitoring technology
Project Team

Prime Recipient

REACTION ENGINEERING INTERNATIONAL

Sub-Awardees

- Project Management
- mMPMS Development
- Mechanism Derivation
- Computational Modeling
- Signal Conditioning and Data Communication Module Development

Pilot-scale Testing

Full-scale Demonstration

Boiler Control Logic

Bill Smith Engineering, LLC
Project Schedule

Year 1
Oct 2018 – Sep 2019
- Design and construction of prototype sensor body
- Design and fabrication of data processing unit
- CFD analysis of full-scale lignite coal-fired boiler

Year 2
Oct 2019 – Sep 2020
- Construction of power and cooling unit
- Development of data processing software for lignite fired unit
- Test and validation of multi-process sensor in a lignite firing pilot-scale combustor
- CFD analysis of demonstration site’s full-scale lignite-fired boiler
- Demonstration of multi-process sensor in a commercial scale lignite coal-fired boiler

Year 3
Oct 2020 – Sep 2021
- Control logic development and implementation for automated control
- Pilot-scale testing delayed due to the COVID-19 pandemic and the following facility shutdown has been completed in July 2020
- The full-scale demonstration has started in February 2021
mMPMS Design Concept
miniaturized Multi-Process Monitoring System

Legacy Sensor System

- Existing sensor placed in air-cooled probe
- Requires access port where tubes have been bent to allow access
- Need cooling air arrangement including cooling valve

mMPMS

- Use the gap in the membrane for sensor insertion
- Sensor embedded in body with heat management module “without” cooling air
- Multi-process measurements to help condition-based monitoring
- Requires only 110 V power to data processing unit (with active cooling)
Key mMPMS Components

Sensor Assembly
- New ceramics assembled with metal elements
- Designed and machined to fit the membrane hole
- Designed to reach within ¼” of tube crowns

Sensor Body
- Designed for specific waterwall at Hunter plant
- Designed to fit the sensor assembly
- Based on heat transfer modeling to optimize heat management

Data Processing Unit
- Signal conditioning module
- Hardened electronics with cloud-capable software
- Designed using industrial Internet of Things (IIoT) paradigm
- Scalable system to support unlimited sensors
- Processing power to enable future support for machine learning/artificial intelligence
- Active Cooling

Signal conditioning module
- Updated and improved the existing signal conditioning module
- Simplified electronic design and increased resolution to allow detection of localized attack
- Implemented full digital signal conditioning
- Implemented full digital data communications
- Embedded “smart” electronics at board level (embedded controller)
Multi-Process Monitoring

- Leveraged the legacy metal wastage monitoring capability
- Developed quantitative heat flux and deposition correlation based on sensor signal
- Tested and validated during pilot-scale testing
Remote Access & Data Communication

Based on discussion with plant:
- No connection to plant distributed control system (DCS) allowed
- All sensors wired to on-site computer through switchbox
- On-site computer connected to independent network
- Remote desktop software to connect to on-site computer
R&D on Pilot-scale Testing Facility
Pilot-scale Testing @ University of Utah

- Pilot-scale testing in 100 kW down-fired combustor at University of Utah (UoU) in Salt Lake City, Utah

- 4 different fuels
 - Lignite*
 - PRB (UoU has in storage)
 - Bituminous – Illinois 6
 - Wood

- Increased workscope includes Mg(OH)$_2$
 - Commonly added for deposition/slagging control
 - Utilize pilot data to improve model deposit properties for plants that use additive
Ash Deposition Correlation Development

Reference Temperature Calculation

Deposits Surface Temperature Calculation

Guess: Deposits Porosity

Deposits Thermal Resistance Calculation

Deposits Thermal Conductivity Calculation

Deposits Thickness Calculation

Deposits Mass Calculation

 Reasonable?

= Measured Mass?

= Measured Mass?

Additional Verification by Measured Thickness

17
The calculated deposits thicknesses agree well with the measured deposits thicknesses.
Demonstration at Leland Olds Station
Basin Electric Power Coop (Demonstration)
Leland Olds Station

- Located near Stanton, North Dakota
- Two lignite-fired units with total generating capacity 669 MW
 - Unit 1 – 222 MW opposed wall-fired PC (demonstration plant)
 - Unit 2 – 447 MW opposed wall-fired cyclone

Plant is interested in ash management and boiler tuning
Demonstration Plan

Mounting hardware installation during Outage
• Support pipe
• Cutting the hole in the webbing

Pre-demonstration site visit
• After mounting hardware installation
• Site preparation check list (Equipment, Desired operating conditions...)

5-week Demonstration
• 5-week monitoring
• Targets Feb 2021 – March 2021
• Monitoring continued

Data Analysis & Control Logic Development
• Focus of Year 3
• Plant and sensor data review
• Boiler operation logic including soot blower operation
Sensor Locations

- Placement of 3 side wall sensors guided by plant experience
 - High deposition and moderate wastage rates
 - One sensor on Left wall just above windbox
 - 2 sensors slightly above OFA – 1 each on left and right wall

- Placement of 2 additional sensors on the front wall based on model predictions
 - Regions of shifting deposit pattern at different loads
 - Alternating reducing/oxidizing environment when cycling
System Installation

Sensor #1

Sensor #2

Sensor #3

Sensor #4

Sensor #5
Soot Blower and Sensor Layout
• The peaks in deposition thickness reflect the operation of the IR type soot blowers near the sensor (the frequency is about once per hour)
• The white bottom line represents a clean condition (~ 0 mm thickness) of the sensor after soot blowing
Real Time Data: Deposition Thickness - Calibrated

Sensor #1, 3:00 Feb 27 – 15:00 Mar 1

It is more reasonable to compare the deposits thickness between various loads after calibration.
Test 1: Testing Procedure

sensor #1, 9:00 to 15:00, March 3, 2021, full load

<table>
<thead>
<tr>
<th>EAST (LEFT)</th>
<th>NORTH (FRONT)</th>
<th>WEST (RIGHT)</th>
<th>SOUTH (REAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>21</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

- The periodic increase-decrease of the real time deposits thickness is truly an interaction between the sensor and the soot blowers.
- The reported absolute value of the real time deposits thickness is reasonable.
Test 1: Real Time Behavior

sensor #1, 9:00 to 15:00, March 3, 2021, full load

- **IR37 in operation**
- **Sensor insertion**
- **Minor impaction from the operation of the far away soot blower**
- **Sensor retraction (~8mm)**
- **IR8, IR9, IR22, IR23, WB3, WB5 back in operation**

![Graph showing deposits thickness over time](image-url)
Test 1: Deposits Thickness Validation

sensor #1, 13:00, March 3, 2021, full load

~2-3mm

~6mm

Sensor reported value is about 8mm
Test 1: Real Time Behavior

sensor #1, 9:00 to 15:00, March 3, 2021, full load

- IR37 in operation
- Sensor inserted
- Minor impaction from the operation of the far away soot blower
- Sensor retraction (~8mm)
- Sensor insertion
- IR8, IR9, IR22, IR23, WB3, WB5 back in operation
- Before soot blowing
- After soot blowing
Test 2: Real Time Behavior

sensor #1, 9am to 15:00, March 2, 2021

Deposition Thickness (m)

- soot blowing
- sensor retraction
- sensor insertion
- soot blowing
- sensor retraction

before soot blowing

28.6 mm

decreased by about half

after soot blowing

28.6 mm
Test 3: Real Time Behavior

sensor #2, 12am to 15:00, March 3, 2021

Sensor is relatively clean, which is consistent with the data.
Real Time Data: Deposition Thickness

Sensor #4 & 5, 3:00 Feb 27 – 15:00 Mar 1

- No need to blow
- Fine to blow
- No need to blow

6pm

Sensor #4

Sensor #5

6am

Full Load

Transition

Low Load

Full Load
Real Time Data: Temperature

Sensor #1, 3:00 Feb 27 – 15:00 Mar 1

Sensor surface temperature is consistent with the low change
Real Time Data: Heat Flux

Sensor #1, 3:00 Feb 27 – 15:00 Mar 1

Heat flux is consistent with the low change
Summary

- Successful upgrade of REI’s legacy corrosion monitoring system
 - Miniaturization and modification of the sensors accommodating membrane installation and passive cooling
 - Development of new signal conditioning module with improved data communication and resolution
 - Legacy data acquisition hardware successfully replaced with easily maintainable and scalable electronics
 - Development of new big data platform for collection and analysis

- Five miniaturized MPMS (i.e. mMPMS) sensors and associated control boxes were successfully installed through the membrane walls in LOS1

- Sensor deposition and corrosion data were collected during a 5-week testing campaign

- Pilot scale testing (University of Utah) verified reliability of new electronics, and provided for the development of a correlation for lignite-based deposit thickness

- LOS1 tests have confirmed that the sensors are very sensitive to the surroundings including operation of soot blowers and water lances (i.e. deposit growth) and impacts of boiler ramping (i.e. corrosion)

- Tests demonstrate that the mMPMS deposition measurements are qualitatively and quantitatively reliable

- Tests show that corrosion rates at the 5 sensor locations are generally very low except for spikes during load ramps
Plan

- Data analysis and control logic development will continue for the rest of the Year 3 in this project
- Presenting results at the following conferences:
 - *Clearwater Clean Energy Conference, June 20-24, 2021*
 - *The Thirty-Eighth Annual Pittsburgh Coal Conference, September 20-23, 2021*
 - *AFRC 2021 Industrial Combustion Symposium, October 10-13, 2021*
Acknowledgements

- U.S. Department of Energy - National Energy Technology Laboratory (DOE/NETL) through DOE Cooperative Agreement No. DE-FE0031680
- DOE/NETL Project Manager: Mr. Omer Bakshi
- Thank you to Basin Electric headquarters and the LOS personnel for their support of this project