optoknowledge

Mid IR Laser Sensor for Continuous SO₃ Monitoring to Improve Coal-Fired Power Plant Performance during Flexible Operations

Contract# FE-0031560 Period of Performance: 03/30/2018 to 01/31/2022 2021-05-20

Jason Kriesel Ilya Dunayevskiy

This material is based upon work supported by the Department of Energy Award Number FE-0031560

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Project Description and Objectives

FERCo

UCI

Purpose:

optoknowledge

Produce and demonstrate a continuous SO₃ / H₂SO₄ monitor for coal-fired power plants

Alignment to Fossil Energy objectives

- Real-time information to optimize additive injection and minimize catalyst deactivation
- Without an SO₃ monitor, power plants over use sorbent => waste (typical sorbent costs \$1M/yr)
- Sensor would enable cost savings (\$100k/yr \$200k/yr) and improved flexible operations

Driving questions

- Can the sensor provide sufficient sensitivity in a challenging environment?
- Do measurements accurately reflect the composition of the flue gas?

UCI 📬 FERCo

Equilibrium Conditions vs Temperature

Alkali Sorbent Injection

FERCo

UCI

Alkali sorbent injection uses include:

optoknowledge

- Mitigation of H₂SO₄ 'blue plume'
- Enhanced powdered activated carbon (PAC) efficiency in capturing mercury
- Mitigation of ammonium bisulfate (ABS) and SO₃
 condensation impacts on air heater fouling
- Mitigation of duct corrosion due to SO₃ condensation

Alkali sorbent injection locations moving upstream:

- Originally downstream of air heater / upstream of particulate collection device
- Also between the Selective Catalytic Reduction (SCR) outlet and air heater
- Recently positioned upstream of the SCR

Lack of continuous SO₃ monitor limits ability to optimize sorbent injection rates

 \succ

 \geq

 \succ

NATIONAL ENERGY TECHNOLOGY LABORATORY

Current Technique for SO3 / H2SO4

UCI

₱=FERCo

UCI 📬 FERCo

Spectroscopy System

H2SO4 Spectrum

FERCo

UCI

Vibrational and Electronic Spectroscopy of Sulfuric Acid Vapor

Paul E. Hintze, Henrik G. Kjaergaard, Veronica Vaida, and James B. Burkholder *The Journal of Physical Chemistry A* **2003** *107* (8), 1112-1118 DOI: 10.1021/jp0263626

Figure 1. Vapor-phase IR spectrum of H_2SO_4 in the range of 500– 1550 cm⁻¹. The spectrum was recorded at 150 °C with a path length of 100 cm. The reference spectra of H_2O and SO_3 have been subtracted.

H₂SO₄ spectrum is broad

System Innovations

FERCo

UCI

• Extractive measurements are not representative

- Cross-duct measurements suffer from alignment and transmission issues (soot)
- Absorption features strongest in Mid-IR

optoknowledge

- Absorption feature are relatively broad spectrally
- Lasers should be remotely located from hot cell

Lab-based Flue Gas Test Facility

₱=FERCo

Lab Testing

UCI

UCI University of California, Irvine

- Controlled conditions with ability to vary: SO₂, SO₃/H₂SO₄, H₂O, Temperature
- Generate "library spectra"

Higher Fidelity Testing

₱=FERCo

UCI

optoknowledge

- Industrial facility for catalyst testing
- Hot flue gas with ability to add SO₂ and generate SO₃ / H₂SO₄
- Controlled condensation performed and utilized as "ground truth"
- SO₃ difficult to measure in presence of high SO₂ concentration

Real-time H2SO4 Measurements

- Laser measurements, real-time updated every second (1 Hz) can observe dynamics
- > Laser measurement precision better than 1 ppm at 1 Hz better precision possible with averaging

EPRI UCI =FERCo

Inject SO₂ in combustor

NATIONAL ENERGY TECHNOLOGY LABORATORY

H2SO4 Measurements Vs. Cell Temperature

Power Plant Test Site

Measure at Output of SCR

EPRI UCI =FERCo

Parallel Measurements

EPRI UCI =FERCo

Site coordination / test management

Controlled condensate wet chemical measurements $(SO_3 + H_2SO_4)$

> Sorbent trap measurements (SO₃ + H_2SO_4)

Laser Measurements

UCI 📬 FERCo

optoknowledge

Real time concentration 1 second update PIMS Tried two different probes Control **ECQCLs** Conducted tests at different cell \succ temperatures H_2SO_4 25 -**Control Electronics** walken and and the March March al and a low all and 20 H₂SO₄, ppm 15 -10 - H2SO4 - H2O PIMS 5 - SO2 H_2O 0 60 x10³ H₂O, ppm 40 20 - SO_2 0. 2500 bpm 2000 -1500 0 0 1000 -500 10:05 AM 10:10 AM 10:15 AM 10:20 AM 10:25 AM 10:30 AM 10:00 AM 3/17/2021 Time Stamp

Measurement Comparison

Date	Load	d Sampling Laser Cell H2SO4 [ppm] Total: H2SO4 + SO3				3 [ppm]	SO2 [ppm]		H2O [%]		
		Setup	Тетр	Laser	Laser	C.C.	Trap	Laser	Calc.	Laser	Calc
3/16	700	А	300 C	0.59	1	42	36	2944	2979	7.6	7.03
	700	А	250 C	5.5	7	41	34	2985	2979	7.8*	7.03
3/17	650	В	250 C	16	21	46	44	2795	2940	6.8*	6.77
	650	В	300 C	10	21	45	42	2717	2940	6.8	6.77
3/18	545	С	250 C	24	35	54	47	2433	2663	6.8*	6.23
	545	С	250 C	25	36			2470	2663	6.7*	6.23
	545	С	250 C	25	37			2447	2663	6.8*	6.23
	545	С	250 C	28	41			2366	2663	6.9*	6.23
	625	С	250 C	30	42			2527		7.3*	6.57
	650	D	250 C	23	32			2600		7.3*	6.77
	650	Е	250 C	22	29			2699		7.0*	6.77

* H2O measurements with cell at 250 C using library at 300 C are adjusted by a scaling factor

Project Overview and Status

FERCo

Overview of Project

- Just wrapped up 3rd-year of project
- > Two rounds of prototype development and testing to increase the Technology Readiness Level (TRL)
- > Testing in laboratory (UC Irvine), industrial (FERCo), and Power Plant (Harrison Station) facilities

UCI

Project Status

 \blacktriangleright Successfully demonstrated ability to precisely measure H₂SO₄

- Successfully demonstrated at a coal-fired power plant
- > Developed path for commercial SO_3 / H_2SO_4 sensor
- Industry feedback: "We need a solution now"

Related DOE/NETL SBIR

Related SBIR Project: Real-time Analysis with Pseudo In-situ Detection (RAPID)

04:00 PM Real-time, Close-coupled, Multi-species Gas Analy Jason Kriesel, Opto-Knowledge Systems, Inc.	/zer (SC0020879)
---	------------------

FERCo

UCI

- Mid-IR Laser spectroscopy solution
- Advancing the state of the art \geq

optoknowledge

- Broad tuning Mid-IR lasers
- Hollow core fiber optics
- Close-coupled, heated multi-pass cell
- Technology proven with 1 ppm sensitivity of \succ H_2SO_4 at 1 Hz at a power plant
- Working on dual laser: SO₃ and H₂SO₄ system

Contact: jason.kriesel@optoknowledge.com

This material is based upon work supported by the Department of Energy Award Number FE-0031560