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Project Objective and Background

Objective
To test, validate, and advance the TRL of a novel distributed coaxial cable sensing (CCS)
technology for in situ monitoring of the boiler fube temperature in coal-fired power plants.

Background
d Boiler tube failures: extremely costly with significant economic impacts
= A single tube failure in a 500 MW boiler requires an average of 3.6 days of repair work
and results in a loss of more than 1 million dollars per day
Q Tube failures: complicated mechanism & difficult to predict
= Harsh operation conditions (subcritical units): steam pressure: 2,400 psi and higher; steam
temperature: 540-600°C; flame temperature: 1500°C
= Various failure reasons: Overheating, corrosion, erosion, fatigue, welding flaws, etc.
Q Current high-temperature sensors for coal-fired boiler fube monitoring

= Elecironic sensors: points sensors. Issue: [imited lifetime and installation difficulties
= Optical fiber sensors: used for high temperature environment. Issue: Fragile to handle




Project Overview

Needs and Challenges

d Condition-based monitoring (CBM) is needed to handle frequent load changes due to
the increasing conftributions of renewable energy sources.

Q Currently available sensors have low survival rate under harsh environment and too
expensive to be widely deployed in existing boilers

Technology Gaps

d Gap #1: Need for low-cost robust distributed temperature sensors that can survive and
operate in high temperatures

d Gap #2: Need for practical methods to install/deploy sensors into existing coal-fired
boilers at a low cost for reliable measurements

d Gap #3: Need for validated models 1o integrate the distributed temperature information
into the existing boiler control, operation and maintenance programs to realize CBM




Current Status of Project

Scope of Work in Budget Period |
O Engineer the sensors, test the welding-based sensor installation methods in high
temperatures, and optimize the instrumentation.

Update on Project Team
O Six month no-cost extension has been applied due to the Covid-19 pandemic and
unexpected temporary closure of University labs

Progress of the project

A The technical progress of the project is on track. All the milestones have been met.

O Progresses have been made in sensor design, fabrication, testing, boiler simulations,
and installation.

O Contfinuation application submitted




Proposed Solution

A boiler tube monitoring system with distributed coaxial cable
temperature sensors

The system includes four parts:
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roject Update — Sensors

Sensors
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= Simulation software is developed to study the power budget and signal-to-noise ratio of
the sensors and sensing system.




Project Update — Sensors

PrinCipIe Temperature sensing sectlons
O Microwave reflections are generated /
by polished notches along a quartz

tube.

d The quartz tube changes its length
and dielectric constant as a function
of temperature.

d The change is measured accurately
by microwave interference.

Stainless-steel
wire (Imm OD)

Stainless-steel tube Fused quartz tube
(6mmlID, 8mm OD) (Imm ID, 6mm.9

Advantages

d Sensing element is well protected.

Q Quartzis stable (material and
stfructure) at high temperatures.




Project Update - Sensors

d Development of surface coated conductors
for enhancing the metal ceramic coaxial
cable sensor performance

= Establishment of lab apparatus for electroplating of Ni
thin films on inner surface of the stainless steel (SS) fube
and outer surface of SS wire for surface electric
conductivity enhancement

= The Ni coating thickness is varied between 10 — 40 um
for performance evaluation in the CCS.

Sample dimensions Quan electroplating Voltage, Ave. Thickness,

tity duration, h \'/ current, A Mm

Tube: OD =", L=1.10m 4 2 1.5 1.4 2012
Tube:OD="";L=1.10m 2 2 1.3 0.7 101
Tube: OD=3/8";L=1.10m 4 4 1.3 0.6 40+3
Tube: OD=3/8"L=1.10m 2 2 1.3 0.7 20+2
Wire: ¢ =1/16";L=1.10m 4 2 1.5 1.3 2012
Wire: g =1/16";L=1.10 m 2 2 1.3 0.5 10£1
Tube: OD=1/8"L=1.10m 4 4 1.3 0.5 40+3
Tube: OD=1/8"L=1.10m 4 2 1.3 0.4 20+2

DC Power 4 + DC Power

AAAAA
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linch

Q Schematic showing the apparatus
arrangements for electroplating
(left) on outer surface of small SS
tube or wire, and (right) on inner
surface of large SS tube.




Project Update — Sensors
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Project Update — Sensors
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Project Update — Sensors

Sensor test results — 350 hours stability at 600°C, Less than 6°C peak-to-peak
including furnace drift
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Project Update - Sensors

Distributed sensing — 10 meters with 9 sensors multiplexed
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Project Update — Installation

Clamp based installation

Seam weld

e

Protection tube

/

l Sensor

Weld

Boiler tube




Project Update — Installation
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Clap based installation
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Project Update — Test results

Test results of Clamp based installation
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Project Update — Installation

Sensor attachment and connections

High-T ceramic coaxial cable
(up to 1000°C)

e

Low-T coaxial cable (-10 to
75°C)

L

Outside Boiler (low temperature)

Penthouse

—— ————— e o — e e — —— — —

Ceramic coaxial cable inside a protection tube (347H). The 347H protection
tube is welded to the boiler tube.

Machined connector to join the cable with the sensor (347H or 316). Needs to
be welded to the boiler tube.

Boiler tube (superheater section 347H)

MC-CCS sensor inside a protection tube (347H). The MC-CCS is spot-welded to
the boiler tube. The protection tube is seam-welded to the boiler tube. The SSC-
CCS sensor is designed to operate below 900°C and is cooled by the steam/water
inside the boiler tube.

_____ ! _rls_,[(!_e_:B_c_)!I_t-_:r_(_ll|§!1_E_e_r_rlp_)_e_t:ajg.l_rf)__““““““““ Thermocouple welded to the boiler tube




Project Update — Instrumentation

Data acquisition system and on-site instrumentation

Circulator

. Software:
Switch
« Window 10
 LabView

Thermocouple

USB-4718  Microsoft

Thermocouple
Office

Thermocouple

Thermocouple

IPC: Industrial Personal Computer VNA: Vector Network Analyzer
PA: Microwave Power Amplify LNA: Low Noise Amplify
Multiple switch: Microwave Multiple Switch CCS x: Coaxial cable sensor

USB-4718: 4 DIO ports to control Multiple Switch; 4 analog interfaces for thermocouple data acquisition




Project Update — Modeling

Multi-physics Modeling on Reference Boilers
Q Establish 3-D computational fluid dynamics and heat fransfer model for coal fired boiler

A Evaluate Temperature/ thermal stress/deformation profile of the sensor and steam pipes

d Failure mechanisms

iCoaI Fired Boiler Model ‘ l Steam Pipe Panel Model (Simplified) ‘ l Steam Pipe Model (Full scale)
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Project Update — Modeling

d Predict the flue gas condition at the superheater/reheater region for sensor modeling and
sensor installation guidance
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Project Update — Modeling

Criteria to Determine the Temperature Sensor Installation Location

Temperature
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Kl (A) YZ,(x=2 m)

A R"

(D) XY,
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Temperature(K)

o —x=11
K 3.0006+02 - (A) On boiler tube panel surfaces _fimﬁ .
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AN AN

[ Select the boiler tube panel away from the side walls
d Select the boiler tube section closer to the top wall of the boiler

O Select the boiler tube on the back of the boiler panel (not
directly facing the flue gas flow).

(C) YZ3(x=8 m) (D) YZ4(x=11m)  (E) YZ5(x=14 m)




Project Update — Modeling

Boiler Tube Panel Modeling

d Predict the temperature/siress distribution along the steam pipe for sensor installation plan
and failure mechanism study

il J| ] Jl‘_ P6P Steam Inlets |
I Steam Outlets s P4 l
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Figure 1: Steam panel with steam tubes

= More than 60 million of elements " Temperature Profile of the steam
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Project Update — Modeling

Boiler Tube Panel Modeling

d Predict the temperature/siress distribution along the steam pipe for sensor installation plan

and failure mechanism study

Temperature
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Project Update — Modeling

Multi-physics Modeling on Sensor Design and Optimization

O Establish 3-D Computational Fluid Dynamics, Heat Transfer, and Structural Mechanics
Model for Sensor Design and Optimization

815.016

Flue gas Inlet (1473K/20m/s)

777777

1epno seb anj4
T e T T
8E88RRRIEI82RRRER

v ¥ ¥ I 4

(b)

= Temperature dependent properties is considered in the simulation

= Fluegas direction is not an important factor to sensor performance




Project Update — Modeling

O Predict the sensor response with respect to various steam pipe/flue gas condition in order to
guide the sensor design and optimization

Temperature

Contour 1
Temperature Temperature
Contour 1 Contour 1 727.749
727.615
858.508 854.109
H 849.474 ﬂ 845.531 ;g;gﬁg
1 840.440 836.953 ;
| 831.407 | 828.374 727.212
| |822.373 819.796 727.077
| 813.339 811.218 726.943
804.305 ‘;gf g‘s? 726.809
795.271 785483 726.675
786.237 Ui 726.540
j 418 768.326 726.406
;gg 132 759.748 726.272
750.102 ;3; ;;g 726.138 ..
732054 734.013 726.003
732034 725435 ;ggggg
723.000 S
K
K] K K]
(b) (c)
Temperature
Conlgsv 1 Eimgﬁ’r?lure
727.096 - 727.080
726.987 726.978
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726.768 } 726.775 )
e y 3
b 726.572 .
726.441 / 726.470 //
726.331 P’ 726.369
726.222 726.267
726.113 726.166
726.004 726.084
725.894 725.963
725.785 4 725.861
725676 | 725759 M
725.567 w 725658
725.457 725.556
K] K]
(d) (e)

Cases Protective  Air domain Clamps Outer Quartz
[Steam wall Conductor
/flue gas] [Max/min]
(K) [Max/min] [Max/min] [Max/min]  [Max/min]
72311423 858.5/ 854.5/ 727.81 727.11 727.1/
723 725.4 725.7 725.5 725.5
723/1423
(opposite o g459/ 842.1/ 7275/ 726.8 726.8/
flue gas) 723 725.3 725.6 725.4 725.3
723 /1423
(Variable air 1030.3/ 1022.4 /730 737.21 737.21 737.31
property) 723 730.9 730.5 731.08
750/ 1100 813.6/ 811.5/ 752.2/ 751.9/ 751.9/
750 751.1 751.3 751.1 751.2
923/1773 1061.7 / 1057.1/ 927.8/ 927.0/ 927.0/
923 925.4 925.7 925.4 925.4

temperature with good consistency.

= Coaxial senor can capture the boiler pipe
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Multi-physics Modeling on Sensor Design and Optimization
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After consider the thermal conductivity
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T Contour 1
'} 736.731 737.215

variation of air with respect to temperature,

the coaxial senor performance is satisfied.
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Project Update — Test and Validation

Plant A

d In collaboration with West Virginia
University and EPRI because of the
synergy of the two projects

A Sensor testing plan has been
developed

d Two sefts of 6-8 ft long coaxial cable
sensors Will be installed and tested in
the superheater section

d Sample fabrication, installation and
testing will be guided by engineers at
EPRI and Southern Company Services

Areal picture of Plant A




Plan for Next Year

d Conduct the multi-physics simulations on boiler and coaxial cable sensor
(CCS) for better sensibility and predict the sensor performance under
various static/dynamic condifions.

Qd Optimize and finalize the CCS design and fabrication for best sensing
performance, stability and robustness.

d Test boiler pipe with welded CCS.
d Sensor installation and field tests at Plant A.
A Develop the data analytics for the field testing.
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Acknowledgment: This material is based upon work supported by the Department of
Energy Award Number DE-FEO031765.

Disclaimer: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any
agency thereof.




