Modern Power Plant Controls

Drivers and Recent Activities

Steven Seachman
Program Lead – Process Controls and Automation

LEAP Workshop
November 3, 2021
Strategic Drivers for Advanced Control

- Operational Flexibility
- Optimizing O&M
- Cost Competitiveness
- Workforce Transition
Program 227 – Process Controls and Automation

- **Key Objectives**
 - Advanced process control strategies for flexible operations
 - Automation development/solutions for consistent operation and reduced operator burden
 - Improvements in existing process control systems
 - DCS management for operational improvements
 - Alarm management logic techniques
 - Improved actuation techniques to minimize process variability
 - Controllability of emerging power systems and low carbon processes
 - Optimization techniques for plants, unit operations and fleet

- **Value to Funders**
 - Plant demonstrations with member participation
 - On demand training via guidance documents and innovative product delivery
 - Novel and emerging control techniques evaluations via EPRI’s Research Simulator

Improved and integrated process control as well as automation techniques to reduce damage, improve plant performance, and enable consistent operations during flexible operations.
Program Value Statement / Tech Transfer Awards

- Steam Temperature Control Strategies for Combined Cycle Units, 2019 (3002016316)
 - Tech transfer award recipient
 - MPC successfully deployed on a CC plant with superior performance to PID

- Process Control Strategies for Low Load Operation, 2019 (3002020541, 3002016325)
 - Six controls improvements implemented
 - Lower, stable minimum load
 - Increased efficiency at minimum loads
 - Improved ramp rate from minimum loads

- Increased Automation, 2019 (3002016326)
 - Options, approaches, practices
 - Readiness index developed
Exploring Plant Control Strategies to Support Grid Frequency Response

Objective

▪ Explore gaps in the research related to frequency response in the area of generator and governor controls

Research Value

▪ Understand requirements and gaps of generator and governor control strategies to support frequency response
▪ Better frequency response strategies can help support power system stability

Key Activities/Deliverables

▪ Report on current state and gaps
▪ Developing plant simulations showing techniques and improvements
Digital Demonstration Facility

Objective
- Establish a Demonstration Facility that
 - Provides the needed infrastructure to reduce implementation time for demonstration of emerging technologies
 - Creates a data pipeline between utility and EPRI for model development
 - Integrates plant digitization technologies to demonstrate step-change benefits
 - Assesses challenges and benefits of technologies
 - Accelerates evaluation and adoption of beneficial technologies

Current Status
- 6 Utilities, International participation
- 12 total projects
- 7 EPRI Programs currently in collaboration
- 3 Universities
- 1 National Lab
- 7 Technology Providers
- 1 OEM
- ~$12.25M in Research
- Extensive use of EPRI’s Data Analytics Stack for data sharing/controls simulator

Accelerated evaluation and demonstration of intelligent technologies
Intelligent and Autonomous Plants Grand Challenge Working Group

- Monthly Meetings
 - Roll Call/Announcements
 - Project deep dives
- Multidisciplinary

- Free to Participate
- Have others that may be interested? Let us know!

Contacts – Steven Seachman – sseachman@epri.com
Kelly Rose – Kelly.Rose@netl.doe.gov
Together...Shaping the Future of Energy™