

Dynamic performance of the 240-kW PEMFC HI-SEA power system

Low Emission Advanced Power – LEAP Workshop, 1-5th November 2021

Eng. Eleonora Gadducci, PhD candidate

Agenda

- HI-SEA Laboratory
- Dynamic load tests
- Conclusions and discussion

HI-SEA Laboratory

Balance of plant to simulate PEMFC system installation onboard a ship

HI-SEA Laboratory

Other components:

- Air compressor with dryer and filters (12.3 Nm³/min)
- Resistive load (modular resistive banks, 300-500V @ 300A)
- 2 groups of 25 hydrogen tanks at 200 bar (max capacity 400 Nm³)

Agenda

- HI-SEA Laboratory
- Experimental activities
- Conclusions and discussion

Experimental activities

Dynamic load tests

Experimental activities

Operative profile tests

- Operative profile tested in line with ship operation requirements
 - Successful implementation
- Fault simulation: 3 stacks active on branch01, 4 stacks active on branch02
- Influence of compressor and anodic purges at const.load

Experimental activities

DC/DC output voltage control

- Voltage control crucial for system integration
 - 3 FC stacks active per branch
 - Current ramp implemented
- Different ageing of stacks results in different power output
 - DC/DC output voltage correctly controlled

Agenda

- HI-SEA Laboratory
- Experimental activities
- Conclusions and discussion

Conclusions and discussion

HI-SEA system: real maritime application size, complete BoP simulating ship environment

- ✓ Different load profiles tested
- ✓ Successful operation
- ✓ Performance linked to BoP assembly
- ✓ "Experimental campaign to assess the adequacy of a complete 240-kW PEMFC power system for maritime applications" (Gadducci et al.) under review Int. J. of Hydrogen Energy

Discussion:

- What will be in the future the design of PEMFC systems for shipping? Which components to be employed?
- Crucial to define a load-dependent control strategy: reactants flowrate (if industrial compressor chosen), number of stacks ON in a mixed series/parallel design
- Considering the most detrimental operative conditions to PEMFC (partial and variable load, high load – see ID-FAST project), when is it feasible to have a FC system as a power generator?

Thank you for the attention!

Dynamic performance of the 240-kW PEMFC HI-SEA power system Low Emission Advanced Power – LEAP Workshop, 1-5th November 2021

Eng. Eleonora Gadducci, PhD candidate

Publications

- "Experimental assessment of FCS for marine application", "Recovery procedure for 30 kW PEM fuel cell stacks", Proceedings of EFC2019
- "Analysis of consequences of cells rupture on PEMFC module performance", "Assessment of PEMFC system performance" for marine application", Proceedings of EFCF 2019
- "Design and Development of a Laboratory for the Study of PEMFC System for Marine Applications", E3S Web Conferences
- "BoP incidence on a 240 kW PEMFC system in a ship-like environment, employing a dedicated fuel cell stack model", Int. J. of Hydrogen Energy, 2021
- "Experimental campaign to assess the adequacy of a complete 240-kW PEMFC power system for maritime applications", under review Int. J. of Hydrogen Energy

