

Clean energy solutions towards zero emissions for maritime applications

Low Emission Advanced Power – LEAP Workshop, 1-5th November 2021

Eng. Massimo Rivarolo, PhD

massimo.rivarolo@unige.it

Introduction

IMO Regulation

The International Maritime Organization (IMO) in 1997 introduced the Emission Control Areas (ECAs) to control pollutant emissions from ships (NOx, SOx, PM) but not CO₂. In 2018 IMO launched a strategy that aims to reduce

CO₂ emissions by at least 50% by 2050 compared to 2008.

Introduction

Current Scenario

Need for alternative fuels and innovative technologies

90% of world transportation in weight terms (11,000 Mtons) by vessels

99% of ships is currently powered by ICE with conventional fuels

2.8% of global CO₂ emissions due to maritime sector (in 2018 about 870 million tons of CO₂)

Introduction

Alternative Fuels and innovative technologies

HELM Tool Description

HELM (Helper for Energy Layouts in Maritime applications)

Developed by TPG Research Group

HELM compares different solutions for energy production in maritime applications considering the **relevance** of:

Weights

Costs

Emissions

In relation to a specific scenario and application

Value	Score	Value	Score
$1 < X \leq 1.1$	10	$3 < X \leq 4$	5
$1.1 < X \leq 1.3$	9	$4 < X \leq 5$	4
$1.3 < X \leq 1.6$	8	$5 < X \le 6$	3
$1.6 < X \leq 2$	7	$6 < X \le 8$	2
$2 < X \le 3$	6	X > 8	1

Technologies implemented in HELM

Energy generation	PEMFC		SOFC	micro GT	Internal Combustion Engine			gine
Fuel storage	CH2	LH2	LNG	LNG	Methanol	LNG	MDO	Ammonia

Case study (small ferry boat) and results

Installed power: 500 kW

Autonomy: 8 hours

Emissions

Technology	Total Volume [m^3]	Total Weight [tons]	Total Cost [k\$]	CO2 [kg]	NOx [kg]
PEMFC LH2	40.8	6.6	682	0	0
PEMFC CH2	33.3	9.4	664	0	0
SOFC LNG	58.9	31.5	655	1685	0
mGT LNG	49.7	15.2	468	3186	1.0
ICE MeOH	12.7	5.2	272	2839	16.5
ICE LNG	10.2	7.1	283	2407	7.4
ICE FO	9.2	4.1	261	3298	38.9
ICE NH3	18.8	6.1	342	0	38.6

HELM user interface

Zero Emission Ultimate Ship (ZEUS) - 2022

<u>Developed in the framework of the TECBIA project (financed by Italian Government)</u>

- First Italian Hydrogen Ship (ZEUS), lenght 25 m
- PEM Fuel Cells (140 kW) and electric batteries for propulsion
- <u>H2 s</u>tored in metal hydrides, autonomy 8 hours.

Clean energy solutions towards zero emissions for maritime applications

Eng. Massimo Rivarolo, PhD massimo.rivarolo@unige.it