

Opportunities and Challenges for High Temp. Fuel Cell with Carbon Neutrality

Min-Fang Han(韩敏芳)

Tsinghua University

Fuel Cell and Energy Storage Center

Department of Energy and Power Engineering

hanminfang@tsinghua.edu.cn

Outline

- **□** Carbon-neutral Target
- **□** SOC R&D Activities
- **□** Progress in Industrialization

Carbon Emissions from Different Energy Source in China

CO2 emissions in Chine are mainly from coal: ~ 80%

CO2 emissions are around 9.5 billion tons in 2018, account for 28% of total global emissions 1. Electricity and heat

Carbon emissions by sector (1990 - 2018)

Carbon emissions by sector in 2018

Industries with the largest carbon emissions in China in 2018: thermal power, oil and gas, steel, and cement

electricity and heat

production comes

production: 51%

Coal-Based Energy and Carbon-neutral Target in China

CO₂ emissions and carbon intensity in the power sector in selected regions

(IEA, World Energy Outlook 2020)

CO₂ emissions from the power sector rebound after the pandemic but never return to their 2018 peak in the STEPS

China aims to have CO₂ emissions <u>peak before</u> 2030 and achieve <u>carbon neutrality before 2060</u>

Chinese President Xi Jinping addresses the General Debate of the 75th session of the United Nations General Assembly via video, September 22, 2020. /Xinhua

Energy-related issues in China

- **▶** Background: Coal is the main energy source (50~60%)
- Demands: High-efficiency, low-pollution, <u>carbon-neutral</u> power generation
- Possible solution: New energy conversion technology

Solid Oxide Fuel Cell (SOFC)

- **High efficiency** (40-65% LHV)
- Fuel flexibility
- Low emission $(CO_2, NO_x, etc.)$
- Combined heat and power (CHP)

• ..

12th "Five-Year Plan"——973 Program

Fundamental Research on Carbon-Based SOFC System

2012-2016, 2012CB215400

Chief Scientist: Prof. Minfang Han

Scientific issues

- 1. Electrons and ion transport mechanisms in multiphase system
- 2. Evolution of SOFC multiphase interface characteristics
- 3. Coupled mechanism of multi-physics and multi-scale in SOFC

Research content

- 1. Composition and structure of key materials as well as Electrons and ion transport mechanisms
- 2. Mechanism of electrode catalytic processes
- 3. Interface optimization and Structural Stability
- 4. Optimization calculation, structural design and system simulation of SOFC stack

Achievements

- 1. Carbon-based Fuel
- 2. Interface Stability issues
- 3. Conduction mechanism and theoretical system

SOFC: From 'powder' to 'power'

13th "Five-Year Plan"—National R&D Key Project

Degradation Mechanism and Long Life Strategy of High Efficiency SOFCs

(高效固体氧化物燃料电池退化机理及延寿策略研究) 2019-2023, 2018YFB1502200

Cell——Stack——System

Chief Scientist: Prof. Minfang Han (Tsinghua University)

13th "Five-Year Plan"——National R&D Key Project

Coal Gasification Power System with Near Zero CO₂ Emission

(CO2近零排放的煤气化发电技术)

2017-2022, 2017YFB0601900

Desired achievements IGFC-In

IGFC-Integrated Gasification Fuel Cell

- 1) 100kW class H-T fuel cell power generation with efficiency $\geq 50\%$
- 2) Demonstration of MW-scale IGFC system with CO_2 capture $\geq 91\%$
- 3) Schematic design and technological packages for 100 MW-scale IGFC system, with CO₂ capture≥91% and power generation efficiency≥47%

Key scientific issues

- The carbon transport pathway and energy conversion mechanism in IGFC system
- The key equipment, reaction and pollutant generation rules in IGFC system
- ➤ Synergistic reaction mechanism of CO₂ capture and energy conversion process

Target——IGFC system combined with CO₂ utilization

SOFC: Solid Oxide Fuel Cell;

SOEC: Solid oxide electrolysis cell; OTM: Oxygen transport membrane; IGFC: Integrated Gasification Fuel Cell

SOFC Related Technologies

14th "Five-Year Plan"——New National Key R&D Program

- ◆ 2021.5, "氢能技术"重点专项 Hydrogen Energy Technology
- ——3.4 管式固体氧化物燃料电池发电单元及电堆关键技术(共性关键技术类)

Key technologies of tubular solid oxide fuel cell and stack

——3.5 千瓦级固体氧化物燃料电池发电系统及高可靠性电堆关键技术(共性关键技术)

Kilowatt-level solid oxide fuel cell power generation system and key technologies for highly reliable stacks

- ◆ 2021.5, "新能源汽车"重点专项 New Energy Vehicles
- ——1.3 车用固体氧化物燃料电池关键技术开发(基础研究) Key technologies of solid oxide fuel cells for vehicles

The total amount of state-funded budget for SOFC

is nearly 150 million Yuan in 2021

Co-electrolysis of CO₂ and H₂O in SOEC

Co-electrolysis of CO₂ and H₂O in SOEC provides opportunities to reduce CO₂ in a highly efficient and environmentally sustainable way

RSOC helps power storage and carbon emission reduction

♦ Steam electrolysis: Hydrogen is produced to store electric energy, which is conducive to the smooth operation of the power grid.

电解水:以化学能形式储存电能,对供电系统"移峰填谷"的作用

- ◆ Co-electrolysis of H₂O and CO₂: Reduce carbon emissions through CO₂ utilization. 共电解水和CO₂: 实现CO₂资源化利用, "负碳技术"
- ◆ Utilization of industrial waste heat: Improve energy utilization and reduce carbon emissions. 结合传统工业废热利用提高效率,并实现碳减排。

Collaborative Research Project (NSFC-RGC)

- lacktriangle Renewable surplus power and steelmaking waste heat are used to supply electrolytic water to produce H_2 in high temperature SOEC system.
 - 提出利用可再生能源富余电力(弃电)和炼钢过程余热同时供给高温SOEC系统电解水制氢;
- ullet H_2 is used in iron and steel smelting to replace coal widely used in traditional processes. 获得的氢气用于钢铁冶炼中,替代传统工艺中大量使用的煤炭,助推新型氢冶金技术发展,有效降低整体碳排放水平;
- ◆ SOFC uses stored H₂ for power generation as standby power supply.

 13 在可再生能源电力不足时,以SOFC模式工作,将储存的氢气用来发电作为电力补充,确保电力的可持续稳定供给。

Carbon neutral distributed energy conversion and storage system

Progress in Industrialization

SOFC Technologies Development From powder to power

Materials → Cells → Integration module → System → Users

Set up the SOFC chain for pilot plant

Suzhou Huatsing Jingkun Power System Co., Ltd

SOFC Industrial Chain in China

Standards Committee

Xuzhou, CHN·SOFC Industrial chain

SOFC Industrial Standards In China

- The Fuel cell Committee of China Energy Research Society (CERS) was established in 2016.
- Minfang Han serves as vice chairman and secretary-general.
- The Technical Committee of High Temperature Fuel Cell
 Standardization was established in 2017.
- Minfang Han serves as Chairman.
- The China Z-park Hydrogen &
 Fuel Cell Industry Alliance
 (ZHFCA) was established in 2021.
- Minfang Han serves as executive vice chairman.

SOFC Industrial Standards In China

	Standard title	Status
1	Solid oxide fuel cell—Terminology 固体氧化物燃料电池 术语	STANDARD NO. NB/T 10193-2019
2	Solid oxide fuel cell—Single cell test method 固体氧化物燃料电池 单电池测试方法	STANDARD NO. NB/T 10829-2021
3	Solid oxide fuel cell—Stack performance test method 固体氧化物燃料电池 电池堆测试方法	STANDARD NO. NB/T 10830-2021
4	Solid oxide fuel cell—Small stationary power system—Safety 固体氧化物燃料电池 小型固定式发电系统 通用安全技术导则	STANDARD NO. NB/T 10831-2021
5	Solid oxide fuel cell—Test method for electrolytes membrane—Part 1: Self-supporting membrane 固体氧化物燃料电池 电解质膜测试方法 第1部分:自支撑膜	Submitted for approval
6	Solid oxide fuel cell—Modules—Safety 固体氧化物燃料电池 模块 通用安全技术导则	Submitted for approval
7	Solid oxide fuel cell—Small stationary power system—Installation 固体氧化物燃料电池 小型固定式发电系统 安装	Consultation
8	Solid oxide fuel cell—Stationary power system—Performance test method 固体氧化物燃料电池 固定式发电系统 性能测试方法	Consultation
9	Solid oxide fuel cell—Planar metal interconnector test method 固体氧化物燃料电池 平板式金属连接体测试方法	Draft preparation
10	Solid oxide fuel cell—Stack—Gas tightness test method 固体氧化物燃料电池 电池堆 气密性测试方法	Draft preparation

Acknowledgement

Financial supported by

- **MOST:** 2018YFB1502203, 2018YFB0105504, 2017YFB0601903
- >NSFC
- ➤ Beijing Science and Technology Plan
- >Many Co-operations . . .

Thank you