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V7 Project objectives

PMMD

Integrating available computational materials and mechanical engineering tools for
graded structure alloy design by WAAM with demonstration.
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W WAAM setup at RTRC

PMMD

WAAM setup available in RTRC showing the
PAW torch, 6-axis robot and wire feeder

(a) PAW

Tungsten

, Plasma gas Electrode
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g : 2 nozzle nozzle
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Six-axis robt

Gas Plasma

' (b)

Plasma
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Melt pool

(a) Schematic of the PAW torch and (b) in-situ observation
during the deposition
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N4 (1) Single print and (2) sharp interface print
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W Sharp interface print (740H on P91 vs. P91 on 740H)
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740H on P91 P91 on 740H Lower hardness at
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dissolution of Fe in 740H observed in 740H over P91 build
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N4 (3) Computational design of the Gen 1 graded alloy builds
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(1st generation) intermediate blocks
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W Gen 1 graded alloy builds with interface: 10%, 60%, and 85% P91
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3 inches

100%740H

10% P91 100%740H
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As-built alloys with interface: 10%, 60%, and 85% P91 (Hardness Map)

predominantly uniform
hardness

10% P91

Gradient interface has
lowest hardness

60% P91

\ W e
740H &
, |

predominantly uniform
hardness

85% P91
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_As-built alloys with interface: 10%, 60%, and 85% P91 (Microstructure)

10% P91 60% P91 85% P91

-:,i\
2 . a
v |

10% P91 |

B FCC

H BCC

o5 o |

Y
» Gradient interface has an FCC structure. « Gradient interface has a BCC structure mainly.

» The presence of &-ferrite is in the P91 close to the interface * No d-ferrite exists close to the interface
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N4 (4) Post-heat treatment of graded alloy builds
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\74

V' Homogenization studies for Gen 1 graded alloys (1200°C/1 hour)

Homogenization at 1200°C for 1 hour was chosen based on the post-heat
treatment designed for sharp gradient builds

A
1200°C Presence of o-ferrite in the P91 side of
H P91/gradient interface in 60 and 10 wt.%
Z 1150°C ) P91 graded alloys.
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v" Clean interfaces in 85 wt.% P91 %,
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v O-ferrite formation in P91 at
P91/gradient interface in 60 wt.%
graded alloy

v O-ferrite formation and Si
segregation in P91 at P91/gradient
interface in 10 wt.% graded alloy

EDS maps confirming the IPF and 1Q+Phase maps confirming
segregation of Si in the the presence of &-ferrite in 60 wt.%

P91/gradient interface in P91 graded alloy
10 wt.% P91 graded alloy ! { ogh EET
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Homogenization studies for Gen 1 graded alloys (1150°C/1 hour)

Homogenization at 1150°C for 1 hour was found to be the optimum
» Segregation of Si and d-ferrite formation was not observed at the interface

From the calculated equilibrium phase fraction for P91 steel, it was found that 1150°C is well below the
temperature at which &-ferrite starts to form

Clean interfaces without o-ferrite formation and
Si segregation after homogenization at 1150°C

60 Wt.% P91 [

4 for 1 hour in 10 and 60 wt.% P91 graded alloys
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Calculated equilibrium phase fraction as a function of temperature for P91 steel
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(5a) Data driven ML and GA design for intermediate block (2"d Gen)
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Linear build supporting data driven modeling

740H
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7 As-built linear graded alloy
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Inverse pole figure and Phase maps along the build direction

B FCC

591 Build direction X B BCC
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1mm Two-phase region

Total length covered ~ 22 mm

740H
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Data driven modeling for composition design
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Gradient build via WAAM

4 100%740H

Linear <
0% P91
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Data driven modeling for composition design (cont’d)

Measured features:

* Composition

* Matrix phase

« etc.

Calculation features:
Freezing range
Phase fractions
Entropy

* efc.

Correlation SHAP
analysis analysis

Measured properties:
* Printability (Porosity)

« Strength (Hardness)
* Ductility (Cracks during
hardness test)

SHAP(Shapley Additive exPlanations)

Of 1
1(1(0
1( (1
0|1

Creating new generation %

200
Individual
With
different
features

1
1
0

E

. . . eee® El Fitness

1
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0

‘Selectlon
iCrossi i i =
0 over 1 1 0 @:
— —— —— @
1 1(=»| 1] 1=
1 0fl1
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Compositions chosen:
1) 90 wt.% P91 [based on modeling]
2) 26 wt.% P91 [based on entropy]
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Data driven modeling for composition design (cont’d)

Configuration Entropy/R

1.8

o

Design results based on High Entropy

' 26 wt.% P91

—e  FCC_TCHEA4
—4A— Alloy_TCHEA4
—v— FCC_TCNI10
Alloy_TCNI10
FCC_TCFE10
~—»  Alloy_TCFE10

740H

20 40 60 80

Content of P91 (wt.%)

100
P91

Based on CALPHAD model, the 26 wt.%

P91 has the highest entropy

Hardness (HV)

Design results based on Machine Learning
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0 20
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Based on ML models, the 90 wt.% P91 has
relatively low porosity and high hardness.

Pore fraction



W7 Step and Scheil diagrams for selected compositions
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As-built 26 wt.% P91 graded alloy

Build dimensions:
Length — 180 mm, Width — 10 mm, Height -A00 mm

26 wt.% P91 build printed using WAAM showing the presence of surface cracks

23
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As-built 26 wt.% P91 graded alloy

Build direction
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W7 As-built 26 wt.% P91 graded alloy
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3.0E-5 13—

25E-5

1

Volumetric CTE (K™)
o
m
T
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1.0E5:

5.0E-6

0.0+ YTQS;SM y+MC+Laves §y+NIC+c1 fa+ ygo: -100

0 10 20 30 40 50 60 70 80 90 100
Content of P91 (%)
Scheil simulations for gradient compositions
between P91 steel and 740H superalloy confirming
the formation of Lave phase at 26 wt.% P91

PITT | SYANSON

Cracks formed in 26 wt.% P91
3 S build were found to be
_imm _ |SRAEEREES « Intergranular

« Surrounded by Laves phase

IPF map confirming the crack to be
intergranular and KAM map showing

high stress regions near the crack EDS maps around the crack confirming the presence of

Laves phase through clusters of Nb, Ti and Mo

&



7 As-built 90 wt.% P91 graded alloy
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Successful build without any cracks achieved

Build dimensions:
Length- 190 mm, Width- 15 mm, Height- 105 mm

el a

5cm

90 wt.% P91 build printed using WAAM and the sample extracted from the build for analysis

5 cm

26
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7 As-built 90 wt.% P91 graded alloy: EBSD - IPF image
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Martensite phase
@ observed along the
build direction

Build direction
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7 As-built 90 wt.%
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P91 graded alloy: Prior Austenite
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Prior austenite grain
size increases as the
build height increases
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7 As-built 90 wt.% P91 graded alloy
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10 -

3456 7 8 9 101112 13 14
Width (mm)

uonoalIp pjing

Hardness variation
predominantly uniform along
the build direction
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N4 (5b) Interface structure design - 2" Gen
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YV Tensile test modeling

PMMD

« Ductile damage model developed to simulate tensile failure

« Phenomenological model for predicting the onset of damage due to nucleation, growth, and
coalescence of voids

« Describes the rate of degradation of the material stiffness once the corresponding initiation
criterion has been reached Necking

« By default, an element
Is removed from the
mesh if all the section
points at any one
integration location have
lost their load-carrying
capacity

Damag

PITT | SYANSON
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Model calibration
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JC hardening law & = [A + B(e‘?")n]
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Design comparison

\ 740H on P91 . 1 H
| : . No improvement between Locklpglnterface_3 Lockm.glnterface_l
IN740H I 50 . Lockinglnterface_l and Brittle phase Brittle phase
13h!r- ‘ . LockingInterface_3
T | Brittle ph 2 %
4! I _ o phase Eﬁ £ Increase of IN740H |N740Hi |N740Hi
t“rloo ’ P91 54 area/material on side — |
POL Y| X improves ductility
o : 10 9
20 : Thickness = 5 mm 16
[ All dimensionsinmm = 248 1 2030 - - - -
— Sharp interface 127 =T —6
' T ~  Lockinginterface 2 %
——P91 As-built
IN740H >0 Brittle phase 1400 |N?4OSH :I il
— s-pullt
IN740H 1200 Interface_1
nterface
1000
_ 52 IN740H : = Interface_2
i ; 200 Sharp interface
POl E LockingInterface 2
@
20 . E o0o LockingInterface 1
;:llizlfness? 5mm 400 LockingInterface 3
Interface 1 : :
_ X 200
Brittle phase property dominates ~ © o - " o
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V7  Design comparison: Failure

PMMD

LockingInterface 2 LockinglInterface_3

Interface |

Interface region

region

Tmax = 807.78 M Pa

T = 624.7 M Pa
e Omay = 1467.6 M Pa

Omax = 1127.36 M Pa

\

Cup-cone failure

» Both Lockinglnterface 1 and 3 show

more plastic deformation in the IN740H

region (lower portion) compared to InfElE
Lockinginterface 2 i

PITT | SYANSON
g

LockingInterface 1

Trax = 815.2 M Pa

Damage initiates in P91 Omax = 1473.28 M Pa

¢k
-




W Deformation comparison

PMMD

PE, PE22 PE, PE22 PE, PE22
0.28 0.52 0.52
0.47
. - 022 £
For sharp .|nterface, load distributes 0.17 §§§ 0.33
to nearby interface elements and 0.12 0:19 Q.28
H 0.07 : 0.14
ea.rly failure occurs dqe to reduced 0.04 §§$ SR )
ultimate strength in brittle phase -0.01 004 004
compared to P91
v IN740H

x

0.0335 0.0749

PE, PE22 PE, PE22

PITT | SYANSON
.

0.34 0.47

By introducing locking design g i3 i
load gradually transfers from b1a 813 031
IN740H to Brittle phase to P91 008 i o8
-0.01 =0 0.01

X <t o X <t %

CE
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Summary

* Non-standard ASTM tensile bar designs were studied
 Locking structure design introduced in the interface zone

* Locking interface 3 shows promise w.r.t strength and printability
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WV Future work

PMMD

« More performance evaluation are undergoing.

* Gen 3 build with mechanical testing will be performed.
%% [ 3¢ generation printing ]
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<:| Computational design on
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Inconel 740H & P91 printing ShafpInterace hilds1or
deposition sequence and
and post-heat treatment
post-heat treatment

s

v

G

37



PMMD Acknowledgment: "This material is based upon work supported by
the Department of Energy Award Number DE-FE0031637."

TL

38
NATIONAL

TECHNOLOGY
LABORATORY

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

N4

PMMD

PITT | SYANSON

Physical Metallurgy and Materials Design Laboratory

Bridge Improved Fundamentals and Engineering Applications

www.pitt.edu/~weixiong
weixiong@pitt.edu

G

usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency thereof."



