

WHEN TRUST MATTERS

This work is supported by the Department of Energy, National Energy Technology Laboratory under award #DE-FE0031631, with NETL program manager Dr. Vito Cedro

ICME for Advanced Manufacturing of Ni Superalloy Heat Exchangers with High Temperature Creep + Oxidation Resistance for Supercritical CO₂

Christopher Taylor, Taiwu Yu, Pengyang Zhao, Supriyo Chakraborty, Steve Niezgoda, Yunzhi Wang, Brett Tossey DNV GL, The Ohio State University, Quintus Technologies

08 June 2021

Objective

- Microchannel heat-exchangers with optimal durability
- Targeting additive manufacturing design for supercritical CO₂ power
 - 700-1000 C, 50+ years
- Optimized material combinations:
 - Surface skin: alumina former, such as Haynes alloy 224 (high temperature oxidation resistance)
 - Internal layer: chromia former having high creep resistance
- Avoid internal oxidation and dissolution of γ' in nearsurface
- Develop and Validate an Integrated Computational Materials Engineering approach to materials design

Continuous chemical/microstructure/strength model

- d(t) oxide film growth rate from Wagner kinetics
- \rightarrow C(x,t) from oxidation/diffusion model/DICTRA
- $\rightarrow \mu(x,t)$ from thermodynamics analysis

Environment = Temperature,

 \rightarrow S(x,t) from coupled phase field/crystal-plasticity

DICTRA Simulation Setup flux boundary condition with k_p

Homogenized

DICTRA Simulation result

Number of aria

Microstructure

Alloy 282- Exposed at 857°C , 4380 hrs

(Credit to Gopal Babu Viswanathan)

Oxidation Rate Constants

5

- - - -

Pruned Decision Tree on Composition

- Decision tree mimics 'family tree' of alloys and superalloys
- Top split:
 - Aluminides vs other alloys
 - Then Pt vs other aluminides
- Second split:
 - Ferritic, austenitic low alloy steels with low activation energy
 - Stainless steels and nickel alloys
- Third split:
 - Low Ni vs High Ni
 - Alumina formers vs chromia formers
- Multiple trees possible (=> random forest)

Diffusion along grain boundary

Table 1. Experimental results for oxide thickness and grain size, and values of diffusion coefficients.

Grain boundary k_c

$$k_c \cong 6.4 \left\{ D_L^* + \frac{2(D'\delta)^*}{G_t} \right\}$$

 δ =1nm

Т (°С)	t (hour)	x (µm)	$g^{\dagger}_{(\mu { m m})}$	$(D'\delta)^*$ (cm ³ s ⁻¹)	D^* (cm ² s ⁻¹)
800	1 5 29 109	$4 \cdot 2 \\ 7 \cdot 9 \\ 16 \cdot 1 \\ 27 \cdot 2$	$0.54 \\ 0.84 \\ 1.24 \\ 1.39$	1.3×10^{-16}	2.1×10^{-14}
700	1 5 35 75 115	1·9 3·8 8·9 12·4 14·7	$0.41 \\ 0.50 \\ 0.51 \\ 0.54 \\ 0.55$	1.8×10^{-17}	1.2×10^{-15}
600	1 6 29 109	0·79 1·7 3·3 6·0	0·23 0·35 0·37 —	1.6×10^{-18}	3.7×10^{-17}
500	$5 \\ 88 \\ 185$	0·28 0·82 1·23	$0.15 \ 0.16 \ 0.16 \ 0.16$	7.4×10^{-20}	$4.5 imes 10^{-19}$

A. Atkinson , R. I. Taylor & A. E. Hughes (1982) A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals, Philosophical Magazine A, 45:5, 823-833, DOI: 10.1080/01418618208239905

Time (h)	Estimated grain size G_t (um)	k_c of deepening along GB (m ² /s)	Oxide intrusion depth (um)
1140 (T=925°C)	50	4.28×10^{-16}	41.9
4380 (T=899°C)	80	3.17×10^{-16}	70.6

Analysis

(b) Viswanathan, G. B., David E. Mills, and Michael J. Mills. "Oxidation-Related Microstructural Changes at a Crack Tip in Waspaloy After Elevated-Temperature Dwell-Fatigue Testing." *Metallurgical and Materials Transactions* A 50.12 (2019): 5574-5580.

→ Oxide propagation path

Time (h)	Oxide intrusion depth (um)	Actual depth (× sin60°) (um)	Equivalent bulk k_c (m ² /s)
1140 (T=925°C)	41.9	36.3	6.94×10^{-18}
4380 (T=899°C)	70.6	61.2	5.49×10^{-18}

Compare with the experiment

(Credit to Gopal Babu Viswanathan)

Oxide intrusion depth

Time (h)	Oxide intrusion depth (um)	Exp results (um)
1140 (T=925°C)	36.3	33.0 ±6.6

Depletion zone thickness

Time (h)	Depletion zone thickness (DICTRA) (um)	Exp results (um)
1140 (T=925°C)	23.9	32.2 ±9.3
		DNV

Phase Field Simulation in Depleted Zone

Simulation results

Simulation results

Oxidation time vs volume fraction of precipitates (phase field simulation)

Mesoscale modeling of Creep and Recrystallization

Stephen Niezgoda

Dislocation density based model

- Phenomenological models are well suited for overall mechanical field predictions and texture evolution, however, it does not perform well in case of localized fields (e.g. dislocation density).
- In the phenomenological model, it is difficult to include different physical mechanisms of strain hardening (e.g. forest dislocation hardening) and recovery (e.g. climb and cross-slip).
- Finally, temperature dependance of the flow curve can not be predicted naturally from phenomenological model.

5

Materials Characterization Volume 171, January 2021, 110737

Microstructure and mechanical properties of Ni-Fe-Cr-Al wrought alumina forming superalloy heat-treated at 600–1100 °C

Adelajda Polkowska * 🎗 🖾, Sebastian Lech ^{6, c} 🔍 🖾, Piotr Bała ^{c, d}, Wojciech Polk

Show more 🗸

- 224 is Solution heat treated by Haynes and original data from Haynes suggested that under in-service condition we would expect the material to be in the solid solution state
- Not a problem use Dislocation Creep Model

Download : Download high-res image (643KB)

Download : Download full-size image

Fig. 3. SEM images showing a grain structure evolution of Haynes HR-224® alloy heat-treated at 600–1100 °C/2 h (polished on silica suspensions, non-etched).

- Vinay Deodeshmukh from Haynes was able to share all of the creep data on 224 with the team
 - 25 tests \bullet
 - Wide range of tempertatures ۲
 - Wide range of stress ullet
- RT stress strain tests from lit

Test Temperature		Yield Strength 0.2% Offset		Ultimate Tensile Strength		Elongation	Reduction of Area
°F	°C	ksi	MPa	ksi	MPa	%	%
RT	RT	45.8	316	106.5	734	48	72
1000	538	43.0	296	93.4	644	53	61
1200	649	54.8	378	74.5	514	13	22
1400	760	57.5	396	69.6	480	11	12
1600	871	12.9	89	19.5	135	106	93
1800	982	6.3	43	9.8	67	101	95

			Approximate Initial Stress to Produce Specified Co							ep in
Temperature		Creep	10 hours		100 hours		1000 hours		10,000 hours	
°F	°C	%	ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa
-		0.1	36.9	254	26.8	185	19.6	135	14.5	100
1200	649	1.0	59.7	412	39.1	270	26.1	180	17.7	122
	1.00	R	82.8	571	18.3	126	29.1	201	18.0	124
	1.	0.1	19.1	132	13.9	96	10.2	70	7.6	52
1300	704	1.0	29.0	200	19.2	132	12.9	89	8.9	61
		R	43.4	299	25.5	176	15.5	107	9.7	67
	1.54	0.1	10.3	71	7.5	52	5.6	39	4.2	29
1400	760	1.0	14.9	103	9.9	68	6.8	47	4.8	33
		R	23.7	163	14.1	97	8.7	60	5.5	38
1500	816	0.1	5.8	40	4.3	30	3,2	22	2.4	17
		1.0	8.1	56	5.5	38	3.8	26	2.7	19
		R	13.5	93	8.1	56	5.1	35	3.3	23
	871	0.1	3.4	23	2.5	17	1.9	13	1.5	10
1600		1.0	4.6	32	3.2	22	2.3	16	1.7	12
		R	8.0	55	4.9	34	3.2	22	2.1	14
	927	0.1	2.1	14	1.6	11	1.2	8	0.9	6
1700		1.0	2.8	19	2.0	14	1.4	10	1.1	8
		R	5.0	34	3.1	21	2.1	14	1.4	10
		0.1	1.3	9	1.0	7	0.8	6	0.6	4
1800	982	1.0	1.8	12	1.3	9	1.0	7	0.8	6
		111 125	R	3.2	22	2.1	14	1.4	10	1.0
1900	1.111	0.1	0.9	6	0.7	5	0.5	3	0.4	3
	1038	1.0	1.2	8	0.9	6	0.7	5	0.6	4
		R	2.2	15	1.4	10	1.0	7	0.8	6
		0.1	0.6	4	0.5	3	0.4	3	0.3	2
2000	1093	1.0	0.8	6	0.7	5	0.5	3	0.4	3
		R	1.5	10	1.1	8	1-2.8	6	0.6	4

Creep-Rupture Strength

R = Rupture

Top Haynes, Bottom Babu (OSU) 224 @ 4K 850C

Creep Modeling 282

- Capture primary and secondary creep
- No explicit tertiary creep effects damage etc
- Model still able to accurately capture LMP for lifing purposes

DNV ©

Fig. 14: Larson-Miller plot of rupture and 1% creep for Haynes 282 alloy. What needs to be done?

- As a team we need to decide what is the best way to handle precipitate growth in 224 and its effect on creep
- Precipitate growth happens at the same time scale as creep meaning that we can't assume a static microstructure or properties
- Next step simulation of effect of oxide/depletion zone in 282 using heterogenous microstructure creep model

International Journal of Plasticity Volume 109, October 2018, Pages 153-168

Heterogeneous γ' microstructures in nickel-base superalloys and their influence on tensile and creep performance

High Temperature Testing

 Wrought flat and tubular specimens exposed to sCO2 for oxidation

- Weld

Weld

- ~ 1khr , 5khr , 10 khr
- Oxidation CO₂, 725°C, 850°C, and 925°C
- Creep testing tubular pressurized tubular sample

Tube for powder fill / vacuum

Solid Steel

• Test duration 100 to 2.5 khrs

Steel cap

21

DNV ©

Nickel alloy tube

HIP of Graded Alloy Microchannel (actual)

HIP of Graded Alloy Microchannel

- Create creep test sample
 - Remove center steel rod
 - Measure wall thickness and diameter at multiple locations
 - Weld Ni-alloy tubing to 282/224 HIP sample
 - Pressurize with CO₂
 - Heat to 850°C, 10-40 hours should show appreciable/measurable creep
 - Expose, measure diameter at end of test
 - Estimate creep strain
 - Characterize
 - Verify / update models

Characterization Efforts:

Targeted for Obtaining and Providing the Necessary Parameters for Modeling Efforts

- Optimizing experimental parameters for imaging in the Scanning Electron Microscope (SEM)
 (i) oxide scale thickness (ii) grain boundary oxide intrusion and (iii) imaging γ' precipitate
- Imaging the extent of γ ' precipitate dissolution zones for various exposure temperatures and times
- Energy Dispersive Spectroscopy (EDS) to discern the oxidation products and elemental segregation.

Target Alloys:

Haynes Alloy® HR-282 : Characterization is Complete. Haynes Alloy® HR-224: Characterization is underway. Expected to be completed in June 2021

Typical Examples of Characterization Efforts are shown in the following Slides

<u>Typical Example</u> of High-Resolution Imaging in the SEM to characterize the extent of γ ' precipitate dissolution

Microstructure: Typically 15-20 μ m thick oxide scale is observed on the surface with additional oxygen intrusion of 1-1.5 grain diameter depth along the grain boundary.

<u>Typical Example</u>: Extent of γ ' precipitate dissolution: Comparison Short and Long Exposure Times

Typical Example: Comparison Between AI and Ti Segregation Behavior Exposed at 855°C

Alloy 224 Exposed at 857°C, 1140 hrs- Typical Example of Precipitates Dissolution

<u>Typical Example</u>: Elemental mapping in Alloy 224 Exposed at 857°C, 1140 hrs

Milestones

Date	Milestone	Status	Updated Target
2-1-2019	MS 1. ICME Integration Plan	Complete	
2-1-2019	MS 2. Sample Fabrication: High Temperature Oxidation Coupons	Complete	
9-1-2019	MS 3. Fabrication of microchannel-like prototype component	Complete	
11-1-2019	MS 4. High temperature oxidation testing	Complete	
6-1-2020	MS 5. High temperature creep testing of prototype component	Delayed	8-1-2021
9-30-2020	MS 6. Demonstration, verification and validation of model	Delayed	9-30-2021

WHEN TRUST MATTERS

DNV