Optimization of WAAM process to produce AUSC components with increased service life

Program Manager: Richard J. Dunst, NETL

Dr. Alexander Staroselsky starosav@rtx.com

RTX: Dr. Ranadip Acharya, Dr. Michael Klecka, Dr. John Sharon; Dr. Anthony Venturra, **Siemens:** Dr. Anand Kulkarni; Dr. Arindam Dasgupta, Jason Weissman, Mark Burhop, Dmitriy Fradkin,

06/10/2021

Goals and Importance of the Study

- Develop WAAM capability to produce functionally graded AUSC components with local morphology and composition to increase structural life in severe service conditions
- Integrate physics-based material and damage modeling into WAAM to produce and test materials engineered for aggressive environment, extreme high temperature and very long operation time regimes

Key Technologies nuggets

- 1. WAAM Microstructure Control Strategy
- 2. Physics-based modeling and prediction of the manufacturing process and resulted materials response
- 3. Data-driven AM Design & Component Risk Assessment
- 4. Technoeconomic assessment of WAAM process
- 5. Machine Learning for Control and Materials design
- 6. Materials testing and environmental impacts

Business Value/Impact

ICME based microstructural design and machine learning driven optimization tools correlated to test for the enhancement of service life of turbine parts fabricated through WAAM

Prediction of lifing based on composition variation across the part thickness and environmental degradation

Development of open architecture process chain for high deposition rates of high temperature capable materials utilizing WAAM for AUSC components.

Wire-Feed Additive Manufacturing – Tailored Local Composition

Haynes 282 deposits & chromium content variation

- 0.045 wire per AWS A5.14:2018 ERNiCrCoMo-2
 - Base material used for deposition parameter development
- Second wire feeder with a high chromium content feedstock
- Blending of the two wire feeds to locally tailor the chromium concentration, for oxidation performance

Preliminary deposition parameters								
Plasma Shield Gas Flow Gas Flow		Torch Standoff	Travel speed	Main Arc Current	Wire Feed Rate			
1.2 L/min	12 L/min	14 mm	3.5 to 7.5 mm/s	150 to 280 A	1.5 to 4 m/min			

Custom H282-like material with
increased chromium content

Chemistry :	
50.5% Ni	1.5% max Fe
30% Cr	0.3% max Mn
8.8% Co	0.15% max Si
7.5% Mo	0.06% max C
1.9% Ti	0.005% max B
1.3% Al	

Wire-Feed Additive Manufacturing – Heat **Source Calibration**

Instrumented substrate for heat source calibration

- Substrates include thermocouples, embedded in approx 0.050" deep holes
- Four thermocouples, two top surface, two bottom
- LabVIEW system can capture thermal history during multiple layer buildup
- Voltage-current data during build is monitored/recorded
- Robot toolpath/travel speed recorded by robot controller
- Data utilized to calibrate heat source model

© 2020 Ravtheon Technologies All rights reserved

WAAM Process Control

Characterization of samples fabricated using <u>lower</u> <u>cooling rate</u> and continuous scans through optical microscopy, pole figures and EBSD.

Fabrication, heat treatment and characterization steps.

Fabrication	WAAM with optimized parameter sets for location specific microstructure and				
	twin wire for graded composition				
Stress-relief	1900F for duration of 2 hours followed by air cooling				
Solutionizing	2075F for duration of 1 hours followed by air cooling				
Ageing	1850F for duration of 2 hours followed by air cooling				
Manufacturing in-	NDE technologies (Eddy current, Flexible Eddy Current, Phase Array UT,				
spection test	TFM/FMC)				
Microstructure	Optical microscopy (OM), Scanning electron microscopy (SEM), En-				
characterization	ergy dispersive spectroscopy (EDS), Electron backscatter diffraction				
	(EBSD), Computed Tomography (CT)				
Mechanical Char-	ASTM Tensile test, creep test, fatigue test, oxidation test				
acterization					

Characterization of samples fabricated using <u>higher cooling rate</u> through optical microscopy, pole figures and EBSD.

Particulate found inside grain boundary region.

Optimization of WAAM to Improve Lifing of AUSC Components

Enables:

- 1. Tailored material property placement for novel part design using functionally graded microstructure and composition ,
- 2. Techno-economic assessment with increased service life,
- 3. Objective Physics Based criteria for Rules Based Design of WAAM hardware.
- 4. Features and physical properties not possible through conventional means

WAAM impact on AUSC component design and development.

Product Life Cycle

- 1. AUSC component development
- 2. Power or efficiency upgrade evaluations
- 3. Repair and refurbishment

End-to-End Toolchain Development

Development of open architecture process chain utilizing Siemens NX digital platform for high deposition rates for high temperature capable materials utilizing WAAM for AUSC components.

7

Techno-economic Assessment

Process to Component costs

© 2020 Raytheon Technologies All rights reserved

8

Cellular Automata (CA) model of crystal growth

Computationally Efficient Method to Predict Process Effect on Crystallographic Structure and Composition

Transition conditions for the CA model.

Effect of Crystal Nucleation on Microstructure

- 5) Random initial nucleation (bulk, substrate, gas/liquidus boundary)
- 6) Explicit time marching

Raytheon

Technologies

2)

- Coarser grains start forming after few fine surface grains.
- Bulk nucleation/3D influence is present.
- Coarser grains at top.

Machine Learning

Quantitative Analytics

Objective

Develop a data-driven framework to establish the processing-structure relationship
Synthesize a deep learning based approach that models the processing-structure relationship as a conditional image synthesis problem

Task: Develop a neural network architecture to generate microstructures, or to directly predict microstructure characteristics, from the process parameters and/or time series of sensor measurements of the process

Materials Testing and Environmental Impacts

Mechanical Testing Matrix

ep coupons						duration	Total				
760C:57 ksi	*2 micro	*2 microstructure		ation	*1 repeat	100 hr/till failure	32				
760C:50 ksi	*2 microstructure		*2 orientation		*1 repeat	100 hr/till failure		coupon	coupon geometry, post processing		sing
704C:75 ksi	*2 microstructure		*2 orientation		*1 repeat	100 hr/till failure					
704C:80 ksi	*2 microstructure		*2 orientation		*1 repeat	100 hr/till failure					
ile coupons											
1 760C	*2 micro	structure	*2 orient	ation	*1 repeats		16	ASTM	subsize		
								E8			
RT	*2 microstructure		*2 orientation		*1 repeats			flat vs ro	flat vs round		
lation coupons											
760C	*3 durati	on	*4 variat	ion	*1 repeats		24				
gue specimen											
1 760C	*5 durati	on	*2 micro	structure	*2 orientation	Till 100,000 cycle	20				
	760C:50 ksi 704C:75 ksi 704C:80 ksi sile coupons 760C RT lation coupons 760C gue specimen	sp coupons *2 micro 760C:57 ksi *2 micro 760C:50 ksi *2 micro 704C:75 ksi *2 micro 704C:80 ksi *2 micro 704C:80 ksi *2 micro 760C *2 micro 760C *2 micro RT *2 micro Iation coupons	sep coupons *2 microstructure 760C:57 ksi *2 microstructure 760C:50 ksi *2 microstructure 704C:75 ksi *2 microstructure 704C:80 ksi *2 microstructure rode *2 microstructure 704C:80 ksi *2 microstructure 704C:80 ksi *2 microstructure 760C *2 microstructure RT *2 microstructure Iation coupons - 760C *3 duration gue specimen -	sep coupons *2 microstructure *2 orient 760C:57 ksi *2 microstructure *2 orient 760C:50 ksi *2 microstructure *2 orient 704C:75 ksi *2 microstructure *2 orient 704C:80 ksi *2 microstructure *2 orient 704C:80 ksi *2 microstructure *2 orient 760C *2 microstructure *2 orient RT *2 microstructure *2 orient Iation coupons	sep coupons *2 microstructure *2 orientation 760C:57 ksi *2 microstructure *2 orientation 760C:50 ksi *2 microstructure *2 orientation 704C:75 ksi *2 microstructure *2 orientation 704C:80 ksi *2 microstructure *2 orientation 704C:80 ksi *2 microstructure *2 orientation 704C:80 ksi *2 microstructure *2 orientation 760C *2 microstructure *2 orientation RT *2 microstructure *2 orientation Iation coupons	pep coupons *2 microstructure *2 orientation *1 repeat 760C:57 ksi *2 microstructure *2 orientation *1 repeat 760C:50 ksi *2 microstructure *2 orientation *1 repeat 704C:75 ksi *2 microstructure *2 orientation *1 repeat 704C:80 ksi *2 microstructure *2 orientation *1 repeats 760C *2 microstructure *2 orientation *1 repeats RT *2 microstructure *2 orientation *1 repeats Iation coupons	ep coupons duration 760C:57 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 760C:50 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 760C:50 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 704C:75 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 704C:80 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 704C:80 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 760C *2 microstructure *2 orientation *1 repeats	ep couponsImage: specime couponsImage: specime couponsImage: specime couponsTotalTotal760C:57 ksi*2 microstructure*2 orientation*1 repeat100 hr/till failure32100 hr/till failure32760C:50 ksi*2 microstructure*2 orientation*1 repeat100 hr/till failure100 hr/till failure100 hr/till failure100 hr/till failure100 hr/till failure704C:75 ksi*2 microstructure*2 orientation*1 repeat100 hr/till failure100 hr/till failure100 hr/till failure100 hr/till failure704C:80 ksi*2 microstructure*2 orientation*1 repeat100 hr/till failure100 hr/till failure100 hr/till failure100 hr/till failure704C:80 ksi*2 microstructure*2 orientation*1 repeat100 hr/till failure100 hr/till failure100 hr/till failure100 hr/till failure706C*2 microstructure*2 orientation*1 repeats16100 hr/till failure100 hr/till failureRT*2 microstructure*2 orientation*1 repeats16100 hr/till failure100 hr/till failureRT*2 microstructure*2 orientation*1 repeats16100 hr/till failure100 hr/till failure760C*3 duration*4 variation*1 repeats24100 hr/till failure100 hr/till failure760C*3 duration*4 variation*1 repeats24100 hr/till failuregue specimenImage: specimenImage: specimenImage: specimen100 hr/till fail	per coupons a a duration Total a 760C:57 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 32 coupon 760C:50 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure 32 coupon 760C:50 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure coupon 704C:75 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure coupon 704C:80 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure coupon 704C:80 ksi *2 microstructure *2 orientation *1 repeat 100 hr/till failure coupon 760C *2 microstructure *2 orientation *1 repeats 100 hr/till failure coupon coupon 760C *2 microstructure *2 orientation *1 repeats 16 ASTM E8 RT *2 microstructure *2 orientation *1 repeats 16 16 R1 *2 microstructure *2 orientation *1 repeats 16 16	per couponsdurationTotal760C:57 ksi*2 microstructure*2 orientation*1 repeat100 hr/till failure32 <t< td=""><td>per couponsiiiidurationTotalii<t< td=""></t<></td></t<>	per couponsiiiidurationTotalii <t< td=""></t<>

Comparison to conventional H282 properties

Mechanical and environmental testing of H282 to be compared to baseline

12

Materials Testing and Environmental Impacts

- Evaluate materials performance at different intervals to track materials • microstructure/property changes with time/temperature through miniature thermal/mechanical testing.
- Analyze the multi-axial structural life and environmental effect assisted-• damage progression of Haynes 282 specimens.

Oxidation characteristics for A-USC conditions

Oxidation in Air

Deodeshmukhand Pint, 2019

Mechanical and environmental testing of H282 to be compared to baseline

Reaction-Diffusion Oxidation Model

Chromia scale grows to the left, alumina grows to the right along grain boundaries - simultaneously

Reaction-Diffusion Model with variable coefficients

- Assume metal can leave the surface according to
 - $D_{Cr}\frac{\partial [Cr]}{\partial x} = k_{abs}\{[Cr] [Cr]_a\}$ at z = 0
- The metal "vapor" is consumed according to

•
$$\frac{\partial [Cr]_a}{\partial t} = -r_0 [Cr]_a [O]_0$$
 at $z = 0$
• $[Cr]_a = m(T)/(P,T)$ at $t = 0$

•
$$[Cr]_a = p_a(T)/(R_u T)$$
 at $t = 0$

• The increase in metal oxide is

•
$$x_{sc} \frac{\partial [Cr_2 O_3]}{\partial t} = k_{abs} ([Cr] - [Cr]_a)$$
 at $z = 0$

- $[Cr]_a = [Cr]_vapor$
- Integrating over $\Delta t: [Cr]_a = [Cr]_{x=0} + ([Cr]_a [Cr]_{x=0})e^{-\frac{k_{abs}}{xsc}\Delta t}$
- The increase in scale thickness is

•
$$(1 - v_f) \rho_{Cr_2 O_3}^0 \frac{\partial x_{sc}}{\partial t} = \frac{v_f}{n_{cr}} M_{Cr_2 O_3} r_o [Cr]_a [O]_0 x_{sc}$$

• where x_{sc} is the scale thickness

•
$$v_f = v_f^0 \left(1 - \frac{x_{sc}}{x_{sc,max}} \right)^n$$
 if $v_f^0 \ll 1, 1 - v_f \approx 1$

• Additional parameters:

•
$$k_{abs}, x_{sc,max}, n, v_f^0, \rho_{Cr_2O_3}^0$$

 Cr_2O_3 Al_2O_3

Al Kα1

25µm

© 2020 Raytheon Technologies All rights reserved

Degradation – Physics Based Oxidation prediction Voids evolution stabilizes the scale

Weight gain used for model parameters verification

Chromia scale thickness is used for model parameters calibration

Summary

- Fully dense Haynes 282 coupon fabrication using WAAM and heat treatment of deposited coupons
- Experimental demonstration of microstructure control in Haynes 282 alloy through WAAM (as-deposit and full heat treated) as well as Haynes 282 composition control
 - The optimized parameter sets created near defect/porosity free structure with >99.6% density, thus eliminating need of hot-isostatic pressing (HIP). The scan strategy used in this particular sample involved a zig-zag scan strategy with a forward speed of 3.5 mm/s.
- Model of the weight gain during chromium and aluminum oxidation; development of the model framework for the simultaneous oxidation of Cr and Al in Haynes 282 and the swallow of the oxide layers
- New oxidation mechanism describing simultaneous oxidation of Cr and Al in Haynes 282
- Development of an image-processing pipeline for identifying grains in microstructure images and computing their characteristics such as area, aspect ratio and orientation angles using machine learning (ML)
- A coupled finite difference Cellular automata model (CA) is formulated and implemented to perform stochastic prediction of as-deposit microstructure in Wire Arc Additive manufacturing.
- A "digital twin" of the physical robotic set up has been created
- Development of NX open code has been completed
- Techno-economic Assessment of the WAAM controlled strategy application to valves has been performed

ACKNOWLEDGEMENT

This material is based upon work supported by the Department of Energy Award Number DE-FE0031821.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.