

Damage Accumulations Predictions For Boiler Components Via Microstructurally Informed Material Models

Crosscutting Research and Advanced Energy Systems Project Review Meeting High Performance Materials Program June 15th, 2021

Monica Soare Vipul Gupta Chen Shen Mallikarjun Karadge

GE Research 1 Research Circle, Niskayuna, NY 12309-1027 **Acknowledgment**: This presentation is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award No. DE-FE0031823.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employed, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Outline

- □ Technical background of the project
- □ Statement of project objectives
- Technical approach to achieving the project goals
- Conclusions and next steps

Principal Investigator M.A. Soare, GE Research Contributors: V. Gupta , GE Research C. Shen , GE Research M. Karadge , GE Research M. Schuster , GE Research R.B. Ganta, Energy Industries of Ohio

Advisory Board: R. DiDomizio, GE Research R. Chamberland, GE Steam Power R. Kunkel. GE Steam Power T. Sambor, Electric Power Research Institute

The authors wish to thank Dr. Vito Cedro III (DOE NETL), Dr. Reddy Ganta (Energy Industries of Ohio) and Thomas Sambor (Electric Power Research Institute) for technical discussions; and to Michael Schuster, David Bodner (GE Research) for mechanical testing and DIC measurements.

Technical Background

Develop physically informed models to capture degradation and predict durability of Nickel-based superalloys during cyclic operations in fossil energy (FE) USC and A-USC power plants components where thermomechanical fatigue and creep damage are occurring at the same time. 300,000h operation

1100 °F to 1400 °F/ Haynes 282/ Boiler headers

A 3-Year, \$937,500 Program to Develop Damage Accumulation Predictions for Boiler Components via **Microstructurally Informed Material Models**

Program Objective: Develop High Fidelity Materials Models for Ni-based Alloys under cyclic and longterm creep loadings

State-of-the-art experimental methods: strain mapping, diffraction patterns using high energy synchotron, dislocation activity captured using transmission electron microscopy.

Microstructurally informed models capturing damage accumulation

Technical Challenges

- Multiple interacting deformation & damage mechanisms
- Long duration/high cost of testing

Statement of project objectives

Provide physically informed models, capturing the microstructural changes taking place in the industrial • components under cyclic loading and exposure to high stress and temperature for long operating life

Task 2. 2020-2021	Task 3. 2020	Task 4. 2020-2021	Task 5. 2021-2022
Develop Quantitative Understanding of Microstructure Evolution, Deformation and Damage Mechanisms of H292	Perform Microscale Modeling of Microstructure and Strain Evolution	Develop Continuum Damage Mechanics (CDM) Model of Haynes 282	Perform Structural Modeling of a Thick Wall Boiler Component
 2.1. Perform High Temperature Tensile and Isothermal Low Cycle Creep-Fatigue Tests (Completed) 2.2 Perform cyclic testing on single step aging heat-treated Haynes 282 alloy (on track) 2.3. Perform Thermo-Mechanical Fatigue Tests (Completed) 2.4. Characterize Microstructures of Test Specimens from Sub-Tasks 2.1, 2.2 and 2.3 (Completed) Milestone: 09/30/2021 	 3.1. Perform Modeling of the Rate of Precipitation and Growth of Gamma Prime Particles in the Haynes 282 Microstructure (Completed) <i>Milestone: 09/30/2021</i> 3.2. Perform Crystal Plasticity (CP) Modeling of Haynes 282 (Completed) 	 4.1. Develop CDM Model Framework (Completed) <i>Milestone: 09/30/2021</i> 4.2. Calibrate, Validate and Document the CDM Model Framework (on track) 4.3. Integrate CDM Model Framework into Finite Element Analysis Software (on track) 4.4. Couple Transient Thermal Analysis to CDM Model Framework in Finite Element Analysis Software (on track) 	 5.1 Perform Baseline CDM Analyses of a Thick Wall Boiler Component (on track) 5.2. Perform Damage Sensitivity Studies on a Thick Wall Boiler Component (on track)

Mechanical Tests (Task 2)

	Specimen number	Type of test	Temperature	Max strain	Cycles to initiation	cycles to failure	status
	L2	LCF	1400F	1.25%	815.00	828	failed
	L3	LCF	1100F	1.25%	1380.00	1,395	failed
	L4	LCF	1100F	0.70%	10400.00	10,503	failed
	L5	SPLCF, 1hour	1400F	1.25%	105.00	114	failed
	L6	SPLCF, 1 hour	1100F	1.25%	987.00	1056	failed
	L7	SPLCF, 4 hours	1400F	1.25%		interrupted	interrupted
	L8	SPLCF, 4 hours	1100F	1.25%		interrupted	interrupted
	L10	SPLCF, 4 hours	1400F	1.25%	72.00	75	failed
	L11	relaxation	1400F	1.25%		discontinued	discontinued
	L12	relaxation	1100F	1.25%		discontinued	discontinued
	L13	SPLCF, 0.5 hours	1100F	1.25%	855.00	862	failed
	L14	Complex loading	1100F	multiple			completed, not failed
	L15	SPLCF 0.5h	1400F	1.25%	110	111	failed
⇒	L16	Combined: first hold 24h then pure LCF	1400F	1.25%		802	failed
	L17	Combined: first hold 24h +then pure LCF	1100F	1.25%	1545.00	1609	failed
	L18	SPLCF 4h hold	1400F	1.25%	interrupt 35 cy	ycles (half life)	discontinued after 35 cycles (half life)

➡ Microscopy analysis performed

Mechanical Tests. Deformation Mechanisms During LCF, SPLCF Loading

Label	Localization	½<110> activity	Orowan bypass / loops/clim	½<110> Dissociation	Pair activity APB shear	Dislocation Density	
1100F LCF 1395 (L3)	Localized	Dominant	Yes	Yes	occasional	medium	
1400F LCF 828 (L2)	Homogeneous	Dominant	Yes	no dissociation observed	occasional	low	
1100F SPLCF 0.5h 862 (L13)	Localized	Dominant	Yes	occasional in γ	occasional	medium multiple slip bands	
1100F SPLCF 1h 1056 (L6)	Localized	Dominant	Yes	occasional	occasional in γ	High, multiple slip bands	
1400F SPLCF 1h 114 (L5)	both heavy localization + homogeneous	Dominant	Yes + more cross slip +climb	Some micro- twinning	Not observed	high dislocation density + debris	

80

- the dominant dislocation activity was slip in the {111} planes and ½ [110] directions
- cross-slip was observed in almost all samples tested at 1400°F
- more localized deformation at 1100°F, with multiple narrow slip bands
- homogenous at 1400°F
- Orowan dislocation loops around γ' precipitates in all specimens investigated
- dislocation pairs activities (and APB shear) were occasionally observed at 1100°F
- 1400°F, especially with hold time, additional climb mechanisms were observed

Dislocation Density Measurements

Plasticity and Creep Material Model

 $\varepsilon^{\text{total}} = \varepsilon^{\text{elastic}} + \varepsilon^{\text{total_inelastic}} + \varepsilon^{\text{thermal}}$ total strain $\varepsilon^{\text{total_inelastic}} = \varepsilon^{\text{plastic}} + \varepsilon^{\text{creep}}$ total inelastic strain $E\varepsilon^{elastic} = \sigma^{eff}$ elastic strain total damage variable $\omega^{\text{total}} = \omega^{\text{plastic}} + \omega^{\text{creep}}$ $\sigma^{eff} = \frac{\sigma}{1 - \omega^{\text{total}}}$ effective stress $\epsilon^{\text{plastic}}$ determined from the consistency conditions df= 0 where $f = |\sigma^{eff} - \sigma_{\rm p}| - \sigma_{\rm o}$ $\sigma_{0} = M \cdot G \cdot b \sqrt{\rho}$ Isotropic hardening Kinematic hardening $d\sigma_{\rm p} = C d\varepsilon^{plastic} - \gamma \sigma_{\rm p} |d\varepsilon^{plastic}|$ $\omega^{plastic} = D_{nl} \epsilon^{plastic_accumulated}$ **Plasticity**

 $\rho = \rho_o + (\rho_f - \rho_o)(1 - \exp(-\epsilon^{\text{total_inelastic}}))$ Dislocation density

> Micro structural parameters/ Material properties: E, b, f, λ ...

Fitted parameters $C, \gamma, D_{pl}, D_{cr}$

Internal variables $\omega^{\text{total}}, \omega^{\text{plastic}}, \omega^{\text{creep}} \rho, \sigma_0, \sigma_p$

$$\begin{aligned} \varepsilon^{\text{creep}} &= \varepsilon^{\text{disloc}} + \varepsilon^{\text{diff}} \\ \varepsilon^{\text{disloc}} &= A(\rho, f) sinh \left(\lambda b^2 \frac{|\sigma^{eff} - \sigma_c| - \alpha \sigma_0}{MkT} \right) \\ \varepsilon^{\text{diff}} &= f(\sigma^{eq}, \mathsf{D}_{cr}) \\ \text{soare, Shen, Cedro III, Superalloys 2020} \\ \omega^{\text{creep}} &= \mathsf{D}_{cr} \int_0^t \dot{\varepsilon}^{\text{creep}} \, \mathrm{ds} \\ \mathbf{Creep} \end{aligned}$$

LCF, 1400°F 1.2% imposed strain 20cmp

Model – FEM – Model – Material Point – Experiment –

SPLCF, 1400°F 1.2% imposed strain 4h hold time

The strain distribution in the loading direction around the notch at about 1085Lbf applied force. 5th cycle

□ Perform Baseline CDM Analyses of a Thick Wall Boiler Component

1100F (USC conditions) - benchmark configuration = Steel outlet header 1400F (AUSC conditions) –H282 alloy header (newly developed model)

□ Perform Damage Sensitivity Studies on a Thick Wall Boiler Component

Damage variable evolution and time/cycles to failure in high strain location

- Performed mechanical uniaxial tests for deformation mechanisms understanding, model development and calibration for Haynes 282 alloy (tensile, LCF, SPLCF, Relaxation, TMF). Minimum stress relaxation and rate effects at 1100F. Significant creep rates at 1400F.
- Characterized tested specimens for key damage mechanisms identification (TEM, EBSD, SEM), measured dislocation density on deformed specimens.
- Developed framework for continuum damage model coupling creep and cyclic plasticity. Model verified against uniaxial tests.
- Completed LCF, SPLCF tests on notched specimens with local strain measurements

Next Steps

- Complete model validation on multiaxial stress tests (using local strain measurements)
- Perform analysis of a thick wall boiler header Baseline configuration
- Perform damage sensitivity studies on a thick wall boiler header

