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“New” Alloy Design – High Entropy

How to approach the vast composition space & identify high performance alloys?

• Challenges

– Over 592 billion compositions for 

3-6 principal elements from 72 

metals.

• A different paradigm

– Four or more principal elements at ~ 5-35 at.%

• Exciting Opportunities

– Unique and exceptional properties: mechanical, 

functional, chemical, etc.



• Advanced Ultra Supercritical (AUSC) operation needs 

higher temperature capable materials

• Nickel alloys present an economic challenge to AUSC 

adoption

– Estimated to be 10 times the cost of ferritic steels
[1]

• High Entropy Alloys (HEA) present an opportunity to 

use the vast compositional space to identify new 

candidate materials

• New computational methods needed to guide alloy 

selection
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Program Objective

Advanced computational approaches to identify new HEAs

Demonstrate HPC models for temperature-dependent yield strength and oxidation models to 

guide new HEA identification and evaluation with performance similar to or better than Inconel 

625 for deployment into AUSC power generation

[1] G. Booras, J. Powers, C. Riley, H. Hendrix, "Engineering and Economic Analysis of an Advanced 

Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture 

Task 7. Design and Economic Studies", DOE Contract DE-FE0000234 Final Report, 2015.
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Selection Basis for Single Phase FCC Materials

Considerations Advantages Disadvantages

FCC Materials - Ductility

- Oxide formation

- Lower cost materials match operating 

temperature ranges

- Limits on operating 

temperature

Precipitate Formation - Computationally feasible with DFT 

and ML-searching algorithm

- No complex computation/experiments 

to determine precipitation kinetics

- Potential lower limit for strength 

- Potentially limit maximum 

strength possible

Evolution in service - No coarsening or strengthening phase 

depletion over time

- Doesn’t limit all evolution

- Limited long-time HEA testing 

completed to date

Economic - Remove lengthy precipitation cycles 

from sluggish kinetics

- Baseline for revised techno-economic 

analysis

- Materials development costs
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Overall Program Tasks

Task 1. Material 

Selection

Task 2. Temperature 

Dependent Yield 

Strength Model

Task 3. Performance 

Evaluation and 

Selection

Activities

- Evaluate model approach to 

guide material selection for 

strength and oxidation

- Change in HEA selection from 

new models

- Computational model for HEA 

yield stress of different HEAs at 

different temperatures

- Reduced order model potential

- Experimental validation data 

- Evaluate model approach to 

guide material selection for 

strength and oxidation

- Change in HEA selection from 

new models/criteria

Information

Flow

- NETL: optimization criteria

- RTRC: compositions

- NETL predictions

- RTRC experimental results

- NETL revised strength/oxidation  

criteria

- RTRC experimental results

Deliverables

1. NETL: Identify optimization 

criteria

2. RTRC: Identify candidate HEA

1. NETL: temperature dependent 

yield strength and potential for 

reduced order model

2. RTRC to measure yield strength 

and characterize oxides

1. NETL: Model refinements

2. NETL: Estimate oxide scale 

formation

3. RTRC: HEA changes based on 

any criteria revisions

In progress



Alloy Selection
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Machine Learning Framework for Alloy Discovery

Systematic approach to optimize performance within composition space

User defines 

• Up to 3 objectives

• Up to 3 constraints

• Elemental palette for consideration

Risks & mitigation

• Large search space with long computational 

time (e.g. CALPHAD prediction of Tmelt)

– Surrogate models

• Limited data

– Multi-source models

– Targeted experiments

S. Sarkar, K. Smith, J. Sharon, R. Deacon, and G. V. Srinivasan, “Machine Learning-aided Accelerated Discovery of HEA 

for Turbomachinery Applications,” (Oral) In 1st World Congress on High Entropy Alloys (HEA 2019), Seattle, WA.



• Used machine-learning framework previously developed at RTRC to identify candidate HEA

– 12 element palette to identify 2000 compositions during each run

– Common Objectives: Maximize melt point; Maximize yield point at RT or 800 °C; Either: minimize 

density, minimize cost, or maximize modulus

– Constraint: VEC greater than 6.8

• Next step is to filter the results to determine the actual space available
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Compositional Searching

Set of conditions that allowed for complete run

Yield Stress (MPa)



• List of candidates was narrowed down to 33 potential candidates

– First required single FCC phase at end of Scheil solidification simulation

• Most likely to be single phase or lower concentration of multiple phases

– Reviewed calculated phase diagrams and yield strength 

• Identify HEAs with higher fraction of FCC phase present at 750 °C

• Selected for a range of strength to validate strength predictions

• Set of 4 candidate HEA compositions identified

– Alloys have been fabricated to produce small bars

9

HEA Selection
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• NETL team
• Dr. Michael Gao
• Dr. Zongrui Pei
• Dr. De Nyago Tafen

• Predict temperature-dependent yield stress 
• Improve Curtin’s model with DFT input on atomic volume, stacking faults energy, short-range order
• Validate and refine the model

• Predict atomic structure evolution (e.g., short-range order) as a function of temperature
• Ab initio molecular dynamics (AIMD) simulation

• Predict oxidation resistance at key temperatures 
• Oxygen diffusivity and transition metal diffusivities using AIMD 
• Correlate diffusivities with oxidation resistance 
• Validate and refine the model

HPC Tasks at NETL
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Yield Strength Modeling
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• Keep the major elements (9 elements);

• Other elements may be considered for a finer 
searching;

• Varvenne-Curtin model;

• Volume is taken as the weighted Voronoi and 
elemental volumes;

• Voronoi volume in alloys considers interaction, but local, 
weakens the difference;

• Elemental volume represents the upper boundary of volume;
• 𝑉 = 𝜃𝑉𝑒𝑙𝑒𝑚 + (1 − 𝜃)𝑉𝑣𝑜𝑟𝑜 , 𝜃 = 0.5 for this study; 𝑉𝑒𝑙𝑒𝑚-DFT; 
𝑉𝑣𝑜𝑟𝑜-DFT.

• Need to sample the concentration space (here by a 
step of 0.2);

• Both yield stresses at 0 K and 800 K are calculated.

Predict Yield Strength

Δ𝐸𝑏 = 0.274𝛼
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C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Materialia 118 (2016) 164-176.
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Model Validation
Two systems: CoCrFeNi and VCoNi

S.S. Sohn, A.K. da Silva, Y. Ikeda, F. Kormann, W.J. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Ultrastrong
Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion, Advanced Materials 31(8) (2019).

Experiment: 
400-1000 MPaTheory 

~620MPa

VCoNi

CoCrFeNi



14

Model Prediction for New Alloys
Comparison between NETL and RTRC results
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• The formula to calculate SFE is 𝜸𝑺𝑭𝑬 =
𝑬 𝒙=

𝟏

𝟑
−𝑬 𝒙=𝟎

𝑨

• The total energies E at x=0, 1/3 will be calculated by DFT with the 
optimized parameters;

• The parameter A is the SF area.

Stacking Fault Energy (SFE) Calculations
DFT calculations at zero temperature; VASP package

𝒙 =
𝟏

𝟑
𝒙 = 𝟎
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• 1. More calculations to test and understanding the misfit volumes;
➢The misfit volumes are calculated based on binary solute solution systems;
➢However, for some binaries they form intermetallics rather than solid solutions;
➢We may ignore them in calculating the average misfit volume;
➢We will check this approximations when compared with experiments.

• 2. Calculations of stacking fault energies for the 4 selected HEAs;
➢Now optimizing the basic parameters, such as lattice parameters;
➢Next adjusting the geometry of the stacking fault models;

• 3. Compare and improve the yield stress prediction when experimental 
results are available.
➢Refine the model as needed: considering stacking faults energy, short range order, etc. 

Future Work on Yield Strength Prediction

E. Antillon, C. Woodward, S.I. Rao, B. Akdim, T.A. Parthasarathy, Chemical short range order strengthening in a model FCC high 
entropy alloy, Acta Materialia 190 (2020) 29-42.
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Oxidation Prediction
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• AIMD Code: VASP

• Canonical ensemble (NVT), temperature controlled by a Nose thermostat

• Cubic supercells between 100 and 256 atoms depending on compositions

• Simulation time ~ 30 to 100 ps depending on system size with time step of 
1.0 fs

• Benchmark Calculations will be performed on pure Ni, binary alloys (Ni-Al 
and Ni-Cr) and ternary alloys Ni-Al-Cr.

Predict Oxidation Resistance
Modeling procedures
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• Supercell 3 x 3 x3  → 108 atoms
• O location: prefers octahedral position
• O prefers to be near Ni vacancy (Three 

locations were examined)
• Four temperatures were chosen: 1100 

K, 1300 K, 1500 K, 1700 K
• Diffusion coefficients are calculated as 

follows:

𝑫𝒊 = lim
𝒕→∞

𝑹𝒊 𝒕 − 𝑹𝒊 𝟎
𝟐

𝟔𝒕

• 𝑅𝑖 𝑡 − 𝑅𝑖(0)
2 is the mean-squared 

displacement of atom i

AIMD Benchmark Calculations
Oxygen diffusion in pure Ni

19

Mean-squared displacement of O diffusion in Ni
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AIMD Benchmark Calculations (Cont.)
Oxygen Diffusion in Ni

20

AIMD predicted O diffusion coefficients plotted against 
available literature data.

Fang et al. J. Appl. Phys. 2014, 115, 043501

Available literature data of O diffusion coefficients
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Calculating Lattice Constant at Finite T
Equation of State: P = F(V)

• NVT dynamics

• A series of  simulation cell volumes 
is performed

• Time averaged Pressure is calculated 
as function of  volume

• Equation of  state:
𝑃 = 𝑎𝑉2 + 𝑏𝑉 + 𝑐

• At equilibrium, 𝑃 = 0 ⟹ 𝑉0

a = 10.842 Å
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O Diffusion in Binary Ni-Al and Ni-Cr Alloys
Case of Ni-0.93%Al and Ni-0.93%Cr

• Dilute Al and Cr in Ni 

• 3 x 3 x 3 Supercell: 106 
Ni, 1 Al or Cr, 1 O and 
1 Vac.

• O occupies an 
octahedral interstitial 
formed by Ni, Al/Cr 
and Vac.

6/8/2021 22

Expt: Goto et al.  J. Japan Inst. Metals, 
34, 319 (1970).
kMC: Alfonso & Tafen (2015)Ni Al O Vac
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• Complete AIMD Simulations of Ni-Al and Ni-Cr binary 
alloys (for dilute and non-dilute concentrations) and 
predict O diffusivity as a function of temperature.

• Apply AIMD to predict O diffusivity in Ni-Al-Cr and other 
ternary alloys.

• Investigate the oxidation resistance of down-selected 
HEAs using AIMD: Predict the O diffusivity as a function 
of temperature

• Validate and refine the model as necessary.  

• Using AIMD investigate the effect of short-range order in 
HEAs by simulating the evolution of the atomic structures 
as a function of temperature. 

Future Work on Predicting Oxidation Resistance  

6/8/2021 23

AlCo2Cr2Ni4.5Si0.5

AlCo2Cr2Cu0.5Ni4.5

M. Detrois, Z. Pei, K.A. Rozman, M.C. Gao, J.D. Poplawsky, P.D. Jablonski, J.A. Hawk, Partitioning of tramp elements Cu and Si in a 
Ni-based superalloy and their effect on creep properties, Materialia 13 (2020) 100843.



Conclusions and Future Work
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• Conclusions 

– Identified HEA candidates for computational evaluation

– Determining major computational effects influence for strength and oxidation

– Validating procedures versus literature materials

• Future Work

– Experimental characterization: yield strength at temperature and oxidation

– Compare yield strength model with experiments and identify model improvements

– Evaluate oxygen diffusivity as a measure of oxidation kinetics from experiments
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Conclusions and Future Work
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