Robust Dissimilar Metal Friction Welded Spool for Enhanced Capability for Steam Power Components

US Dept. of Energy/NETL Annual Review
Dr. Erica Sampson, GE Research
DE-FE0031907

June 10th, 2021
Why are Dissimilar Metal Welds (DMWs) needed?

- Increased steam temperature >580°C in HRSG and boilers drives need for transition to austenitic steels from the creep strength enhanced ferritic steels (CSEF)
- In each HRSG and boiler there are thousands of high temperature DMWs throughout the complex tubing system joining the CSEF steels to austenitic stainless steels
- Unpredictable nature of current DMWs represents a risk of unplanned downtime
 - Taking 1000MW off the grid impacts 1 million houses
- These DMWs frequently require being repaired or replaced due to in-field failures and the location of these DMWs can make this difficult increasing the outage time
- Targeted life of HRSG/boiler is 25-30 years with expectations for minimal/routine maintenance
 - Does not account for multiple outages to repair/replace 1000s of DMWs
- Due to the increase use of renewable energy, combined cycle plants will be required to come on and offline more often. This means that:
 - There will be an increase number of cold starts
 - Cycling behavior of the steam fleet will increase
- Therefore, there is a need to improve the creep and fatigue behavior and durability of high temperature DMWs to improve joint life

Improved DMW joint durability needed for increased temperature and cyclic nature of steam fleet
Current High Temperature DMW challenges

Oxide notching near the fusion line

Crack mechanism:
CSEF/Weld Metal

Crack mechanism:
Austenitic/Weld Metal

Oxide notches:

Oxide notches:

Cracking extending from notches into HAZ:

Cracking extending into HAZ:

Cracking following fusion line:

Cracking following fusion line:

Elemental diffusion and deleterious phase changes

δ-ferrite and untempered martensite formation due to C depletion and Ni diffusion between the filler and ferritic steel driven by fusion welding high-temperature dwell times

CTE mismatch stresses

ID and OD corners are strained significantly just because of CTE mismatch stresses

Effective Total Strain Range Plot

Weld/Fusion line geometry – bevel angle

Stainless Steel Strain Range

Relationship between strain range and the bevel angle – reducing bevel angle reduces strain range of joint

M. Kuper. PhD Thesis, the Ohio State University, 2018. Figure 2.1: δ ferrite grains appearing in a DMW as welded (left), after PWHT (middle), and after 10 years of service inside of a power plant (right).
Robust Dissimilar Metal Friction Welded spool for enhanced capability for steam power components

DOE DMW

Program impact

3 year, $6.25MM DOE program to improve dissimilar metal weld (DMW) durability to reduce maintenance costs and provide enhanced cycling capability

Team

GE Research, GE Gas Power & GE Steam Power

Edison Welding Institute

Mfg. Tech., Inc.

Key Innovations

- Demonstrate friction welded dissimilar metal spool w/superior properties
- Mature GE developed nanostructure ferritic alloy (NFA) tech for steam cycle applications
- Enhanced durability through oxidation protective coatings on DMW joint
- GE lifing methodology to predict joint life & durability

Anticipated Benefits

- 5x increase in cold starts & cycling behavior of steam turbine fleet
- Reduced DMW repair frequency
- Improved DMW creep & fatigue behavior
- Advance NFAs from TRL4 to TRL6

Traditional DMWs

Oxide notching and cracking near fusion line and HAZ

Proposed Solution

Friction Welded DMW spool

NFA superior creep resistance
Project Team

Principal Investigator

Dr. Erica Sampson
GE Research

Advisory Board

Dr. Srikanth Kottilingam
Consulting Engineer - Additive/Welding/Brazing/Materials
GE Gas Power

Mr. Denis Bruno
Consulting Engineer – HRSG System Architecture & Design
GE Research

Dr. Haiyang Qian
Principal Engineer – HRSG Mechanical Integrity
GE Steam Power

Mr. Robert Gdaniec
Chief Consulting Engineer – HRSG
GE Steam Power

Mr. Philip Gilston
Principal Engineer – Materials & Welding
GE Steam Power

GE Research

DMW Materials Development, Testing, Lifing

Dr. Erica Sampson
Senior Scientist
Metallurgy, Mechanical Testing, NFA Manufacturing

Dr. Shenyang Huang
Senior Scientist
Metallurgy, NFA Welding & Development

Dr. Martin Morra
Senior Principal Engineer
Metallurgy & Friction Welding

Dr. Sreekar Karnati
Research Engineer
Friction Welding

Mr. Chris Perlee
Technician
Materials Processing

Edison Welding Institute

Tube Friction Welding Development, Production

Mr. Tim Stotler
Advanced Welding Techniques

Manufacturing Technology, Inc.

Collaborator
Production Friction Welding

GE Gas Power

Dr. Voramon Dheeraduada
Senior Scientist
Oxidation & Diffusion

Dr. Patrick Brennan
Research Engineer
Metallurgy, Friction Welding

Dr. Alireza Namazifard
Senior Engineer
Lifing

Dr. Akbar Bagri
Research Engineer
Lifing

Mr. Genghis Khan
Senior Principal Engineer
Lifing & Probabilistics

GE Steam Power

Dr. Srikanth Kottilingam
Consulting Engineer - Additive/Welding/Brazing/Materials

Mr. Denis Bruno
Consulting Engineer – HRSG System Architecture & Design

Dr. Haiyang Qian
Principal Engineer – HRSG Mechanical Integrity

Mr. Robert Gdaniec
Chief Consulting Engineer – HRSG

Mr. Philip Gilston
Principal Engineer – Materials & Welding

Presentati on Title

May 11, 2021
Program Technical Task Summaries

NFA Optimization
- Produce NFA material for tubing extrusion trials
- Hollow tube extrusion trials to produce NFA for friction welding trials
 - Subscale – GE Research
 - Full Scale – H.C. Starck

Friction Welding
- Evaluation of friction welding methods: rotary friction welding and low force friction welding
- Friction welding parameter down-selection
- Microstructural and mechanical assessment of welded spools

Coating and Diffusion
- Identify a coating chemistry and process to prevent differential oxidation and oxide notching across the join
- Evaluate the long-term stability of the spool microstructures through modeling and diffusion multiples

Lifting
- Establish representative accelerated durability testing parameters
- Evaluate durability of proposed designed against baseline configurations utilizing GE developed lifing methodology
Nanostructured Ferritic Alloy Progress

NFA Production

- Mechanical alloying of 1,000 lbs. NFA powder by Zoz GmbH using CM100 attritor mills in ~33 lb. batches
- Composition: Fe-12Cr-3W-0.8Ti + 0.5 wt.% Y₂O₃
- 258 lbs. received in March – remainder expected end of May

NFA Tube Manufacturing Process Development

- First subscale NFA thin wall tubing trial completed
- First thin-walled tube cracked prior to extrusion
- Parameters adjusted for extrusion trial 2 being completed in May
- Optimal parameters will be used for full scale thicker-wall extrusion trials (~180lbs. powder)
- Also assessing alternative processing route of hollow HIP can + Extrusion to preserve NFA powder
Friction Welding Progress

Two solid-state processes being evaluated:

Rotary Friction Welding
One part is rotated at high speed and is pressed against another part that is held stationary. The resulting friction heats the parts, causing them to forge together.

Low Force Friction Welding
Uses an external energy source to raise the interface temperature of the two parts reducing the forces required to make a solid-state weld compared to traditional friction welding.

Evaluation Plan
- Configuration A:
 - Thermal fatigue capability of welded spools
 - Microstructural and oxidation
- Configuration B:
 - Thermal fatigue capability of welded spools
 - Microstructural and oxidation
 - Extract cross-weld specimens for mechanical testing (creep, LCF, tensile)

Current Status
- T91/304H received, T92/Super 304H (UNS S30432) ordered with ~6mo lead time, NFA tubing trials in process
- Tooling designed and built for thinner walled tubing configurations
- Starting optimizing process parameter evaluation for T91/304H

Planned spool configurations for evaluation
Oxidation Protective Coating Development

- Oxidation notching mechanism
- Cracking extending into HAZ:
- Cracking following fusion line:

Oxidation Protective Coating and Microstructural Stability

Initial coating requirements:
- Oxidation resistance in the temperature range
- Thermal expansion compatibility
- Phase stability (of coating as well as coating/substrate interdiffusion)

Other considerations:
- Commercially available coating process and compatible with current practice
- Commercially available material systems (steel, Ni/Co alloys)

Candidate coatings

<table>
<thead>
<tr>
<th>Candidate coating</th>
<th>Alloy family</th>
<th>Rational</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN625</td>
<td>Ni alloy</td>
<td>Chromia formers & CTE between ferritic/austenitic alloys</td>
<td>Ni alloy may cause unwanted phases in steel</td>
</tr>
<tr>
<td>Hastelloy X</td>
<td>Ni alloy</td>
<td>Chromia formers & CTE between ferritic/austenitic alloys</td>
<td>Ni alloy may cause unwanted phases in steel</td>
</tr>
<tr>
<td>APMT</td>
<td>Ferritic steel</td>
<td>Chromia aluminaformers (depending on temperature range) — maybe beneficial in moisture-containing application</td>
<td>CTE compatibility?</td>
</tr>
<tr>
<td>Duplex steel</td>
<td>Duplex steel</td>
<td>Chromia formers & CTE between ferritic/austenitic alloys</td>
<td>Duplex-209 and/or Super duplex-2507</td>
</tr>
</tbody>
</table>

Coating concept

Oxidation protective coating for Robust DMV joint — Conceptual design

Joint and Coating Long-Term Stability

- Assesing deleterious phase formation due to elemental diffusion

Diffusion Multiples

- Evaluates chemical and microstructure changes due to long-term exposure at elevated temperatures of multiple diffusion couple in 1 experiment
- Assembly of configuration A diffusion multiple is in progress

Modeling: Atomistic Molecular Dynamics Simulations

- Numerical, step-by-step, solution of the equations of motion to predict material properties and evolution
- Identified interatomic potentials for interactions in materials system and tested for simplified material systems
- Developed scripts to be used with Sandia National Lab Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code

Atomic configuration of an L12 bicrystal structure. The large spheres are corner atoms while smaller ones are the face atoms. The white spheres show the atoms residing at the grain boundary.
Modeling and Lifing

Joint Durability Assessment

- Joint durability compared to baseline using a GE developed finite element based methodology
- Utilizes LCF analysis by calculating strain range arising from CTE mismatch for targeted missions and field conditions
- Residual stress and its impact on time-dependent durability (creep rupture) will be analytically computed & compared to baseline
- Will also be used to define accelerated durability testing conditions

Current Status

- Updated macros with more robust parametric capabilities
- Developed ANSYS-based material input files for NFA material properties (Young’s modulus, Poisson ratio, CTE, and LCF)
- Modeling results will be compared to the thermal-mechanical fatigue results from the friction welded spools

Effect of Transition Piece Length

- Parametric study on effect of transition piece length via nonlinear elastic-plastic analysis
- Determined minimum length of 50mm for transition piece for lowest effective strain range in T91/T92 & 304H/Super 304H

Effective strain range contour plots from thermal cyclic testing obtained by updated macros versus legacy results.

Legacy results

Current results

Effect of transition piece length on the maximum effective strain range at either side of Configuration A (top) and Configuration B (bottom), for a thermal cyclic testing specimen. Thermal cycling was done between 640°C (hot steady state) and 39°C (cold steady state).
2021 Quarter 2 Planned Tasks

<table>
<thead>
<tr>
<th>NFA Optimization</th>
<th>Friction Welding</th>
<th>Coating and Diffusion</th>
<th>Lifing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Complete mechanical alloying of NFA material</td>
<td>• Friction welding parameter assessment of T91 to 304H by rotary friction welding</td>
<td>• Identify coating requirements, a testing protocol to simulate actual application, and beginning to evaluate coating process for DMW joints</td>
<td>• Evaluate configuration geometry and the effect of an NFA transition piece on the strains produced during thermal cycling</td>
</tr>
<tr>
<td>• Demonstrate successful in-house tubing extrusion trials for thin walled NFA tubing for EWI’s Configuration A friction welding trials</td>
<td>• Build low force friction welding tooling for Configuration A</td>
<td>• Develop rotary and low force friction welding tooling for Configuration B</td>
<td>• Complete machining and assembly of Configuration A diffusion multiple and begin long-term exposure</td>
</tr>
<tr>
<td>• Begin full-scale NFA thicker-wall tube extrusion trial preparation - Pack large can with ~200lbs NFA powder, compaction at H.C. Starck, machine to remove canister material and hollow center by EDM wiring at GE. Targeted extrusion ~July.</td>
<td>• Finalize testing matrix for welded spools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NFA Optimization
- Friction Welding
- Coating and Diffusion
- Lifing
ACKNOWLEDGMENT
This Quarterly Progress Report is based upon work supported by the Department of Energy under Award Number DE-FE0031907.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.