Effect of Impurities on Supercritical Carbon Dioxide (Steels at 450°-650°C)

B. A. Pint, R. Pillai, J. R. Keiser

Corrosion Science & Technology Group
Materials Science & Technology Division
Oak Ridge National Laboratory

Crosscutting Program Review: June 2021

This material is based upon work supported by the Department of Energy Award Number DE-FEAA144.
Acknowledgments

• Funding: DOE Office of Fossil Energy, Crosscutting Research Program
• M. Howell (retired), B. Johnston, M. Stephens — oxidation experiments
• T. Lowe — SEM, image analysis
• V. Cox — metallography
• Special thanks for alloys:
 – Tenaris
 – EPRI
 – Sam Sham, INL
Disclaimer:
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Supercritical CO$_2$ is moving towards commercialization

8 Rivers Unveils 560 MW of Allam Cycle Gas-Fired Projects for Colorado, Illinois

8 Rivers Capital, inventor of a novel supercritical carbon dioxide (CO$_2$) cycle, plans to begin operating a 280-MW NET Power natural gas-fired plant within the Southern Ute Indian Reservation in southwest Colorado by 2025. The company on April 15 also said it will team with agricultural and processing firm Archer-Daniels-Midlands Co. (ADM) to locate a 280-MW NET Power facility in Decatur, Illinois.

The first clean fossil energy: integrated CO$_2$ capture

BUT, burning natural gas in sCO$_2$ creates impurities...
Without impurities, there is a carburization concern in sCO₂

- Low critical point (31°C/7.4 MPa)
- High, liquid-like density
- Flexible, small turbomachinery

Ni-based alloys: OK in sCO₂
But cost is a concern:
Where can steels be used?
New metrics focus on internal carburization

Factsage calculations

Young et al., 2011
Initial test matrix is complete

<table>
<thead>
<tr>
<th>Temperature</th>
<th>RG sCO₂</th>
<th>+1%H₂O+0.1%H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>450°C (842°F)</td>
<td>2000 h</td>
<td>1000 h</td>
</tr>
<tr>
<td>550°C (1022°F)</td>
<td>2000 h</td>
<td>1000 h</td>
</tr>
<tr>
<td>650°C (1202°F)</td>
<td>1000 h</td>
<td>1000 h</td>
</tr>
</tbody>
</table>

Focus on four steels

- Four primary alloys in test matrix
 - T91 (9Cr-1Mo)
 - VM12 (~11Cr)
 - 316H (conventional stainless steel)
 - NF709 (advanced austenitic, 20Cr-25Ni+Nb)

- 10 specimens of each alloy
- With & without impurities (open vs. closed cycle)

Baseline of research grade (RG) CO₂: ≤ 5 ppm H₂O and ≤ 5 ppm O₂
Mass change of 5-6 specimens in RG sCO$_2$ plotted

- One specimen of each alloy removed at 500 h for metallography
- High mass gains for 9-12%Cr steels in all cases
- Low mass gains for FCC steels except 316H at 650°C
Measured rates in sCO$_2$ consistent with the literature

- Metric developed for Solar CSP
 - Slow rate = OK for 100kh life
- Ni-based alloys all “good”
 - Lifetime model: ≤ 800°C = 100kh
- Steel limitations
 - Ferritic-martensitic alloys <500°C
 - Austenitic alloys <600°C
 - Obvious jump in kinetics
 - Advanced austenititics, better
 - Value in 20-25%Cr, 20-25%Ni

9-12Cr steels have similar rates in 276 bar steam
New metric #1: post-exposure room temperature ductility

- 25mm long dogbone specimens
- 316H (16Cr-10Ni)
 - Cr-rich oxides = low mass gain + good ductility
 - Fe-rich oxides = high mass gain + embrittlement
- 709 (20Cr-25Ni):
 - no loss in ductility in this experiment

Pint, 2021, ECS Interfaces, in press
Adding impurities caused accelerated attack in SS:

- $\text{sCO}_2 + 1\% \text{O}_2 - 0.1\% \text{H}_2\text{O}$ per NetPower

Diagram:
- 650°C, 300 bar
- Specimen Mass Change (mg/cm²)
- Exposure Time (hr)
- Open box: RG sCO₂
- Shaded box: 1%O₂ + 0.1%H₂O

Legend:
- T91
- VM12
- 316H
- 709

Notes:
- Minor changes for 9-12Cr steels
- Increase for 709
- Spallation for 316H
Acceleration evident for 316H and 709 (20Cr-25Ni)

316H and 709 rates above the metric at 550°C

→ Longer exposures may be needed to obtain more accurate steady-state rates in this environment
New metric #2: Bulk C measurements after exposure

C increase detectable mainly at 650°C

650°C: most materials showed higher C uptake with impurities in sCO$_2$: less protective scales
Light microscopy: just getting started on characterization

(a) 450°C sCO$_2$+imp (b) 550°C sCO$_2$+imp (c) 650°C sCO$_2$+imp (d) 650°C RG sCO$_2$

sCO$_2$+1%O$_2$-0.1%H$_2$O per NetPower
Summary: sCO$_2$ is a challenging environment for steels

- At 650°-800°C, Ni-based alloys appear compatible

- Steels have problem forming protective scales:
 - 9-12%Cr may be limited to $\sim500^\circ$C
 - Fe-rich oxide formation observed in sCO$_2$
 - 316H at 650°C in RG sCO$_2$
 - Carbon ingress + embrittlement
 - **What about 600$^\circ$C?**
 - 709 formed Cr-rich oxide in all cases
 - Longer times at 650$^\circ$C?
 - 310HCbN/alloy 25: no C ingress at 750$^\circ$C
 - Accelerated attack at 650$^\circ$C with impurities

- All of these steels are affected by impurities!