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Background
Ø Fossil-fuel fired plants use low alloy Cr-Mo Ferritic (Grade 91) and high-alloy Austenitic 

steels (Stainless Steel 347H)

Ø Joining the ferritic and austenitic components necessitates the formation of a dissimilar 
metal weld

Ø Costs associated with premature failure of the joint: $250,000-$850,000 per day

Ø Challenges with dissimilar metal welds
Ø High stresses in the joint – due to mismatch in coefficient of thermal expansion
Ø Carbon migration – due to difference in carbon chemical potential across the interface

Ø Current solution – trimetallic joints result in some improvement in life but joints still fail in 
about half their expected life cycle

Ø Additive manufacturing (AM) – technologies like blown powder directed energy 
deposition allow for graded transition joints for dissimilar metal welds
Ø Reduce differences in carbon chemical potential
Ø Reduce stresses in the joint resulting from CTE mismatch
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Chemical Potential: Identifying Composition Gradients in 
Transition Zone

G91 347H

Ø A steeper transition gradient is associated 
with larger carbon chemical potential 
difference – joint likely to fail because of 
carbon depletion zone

Ø Linear transition has the shallowest gradient 
but not practical – will result in large 
transition zone thickness during fabrication 
since it takes ~3 layers to change the 
composition

Ø 10% transition appears to be practical!

Ø Is there a better composition profile? 

Linear Transition
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Alternate Composition Gradients & Impact on Length of 
Transition Zone
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A transition of 80%G91-60%G91-50%G91-40%G91-20%G91 is shallower than the 10% transition in 
composition for all transition zone lengths at 650 ºC

G91 347H G91 347H G91 347H

G91 347H G91 347H G91 347H
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(a) CTE using JMatPro (b) CTE using ThermoCalc

• For stress prediction,
• 100/100 (516 MPa) > 50/50 (348 MPa) using CTE from JMatPro
• 100/100 (400 MPa) < 50/50  (538 MPa) using CTE from ThermoCalc

• The trend in stress directly follows the difference in CTE
• Stress prediction relies on accuracy of CTE

JMatPro ThermoCalc

Stress in the Joint: Impact of Database on Calculations
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Fabrication of Transition Joint Samples

OD: 17mm
ID: 11mm
Total Height: 23mm

5mm 5mm

347H

TZ

G91

347H

TZ

G91

Ø Transition joints deposited using a BeAM Modulo 400 Blown 
Powder AM system

Ø Joints deposited with 50/50 (3 sections) transition zone or a 
gradation of 80/60/50/40/20 (7 sections)

Ø Cracking observed in 347H but not in the transition zone or G91

Ø Tubular geometry deposited and currently under evaluation for 
understanding geometry impacts on defects and 
microstructure 
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Transition Zone: Characterization 

Ø Cracking visible in 347H side whereas a chevron pattern observed in G91 side of the joint

Ø Hardness peaks in the transition zone – tempered martensite at the bottom and coarser austenite 
grains at the top whereas microstructure in transition zone is significantly finer

Ø Composition changes in line with transition zones – as expected

Optical Micrographs Hardness Profile EBSD IPF Maps EDS Cr Profile
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Detailed Characterization of 80-60-50-40-20 Transition 
Joint

Ø Room temperature tensile properties between those of conventionally fabricated G91 and 347H

Ø Transition zone has finer structure than either of the base materials, explaining the higher hardness

Ø Texture changes from <001> in G91 and transition zone to <011> in 347H (under investigation)

347H Transition Zone G91
347H

G91
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Stress in the Joint: Based on Experimental Measurements
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Th
er

m
al

 E
xp

an
sio

n 
C

oe
ff 

(1
0-
6 /

K) G91
50/50
347H

Measured
Calculated

Ø Measured CTE values in close 
agreement with calculated values using 
JMAT

Ø Reveals stress larger for 50/50 transition 
compared to a sharp transition of 
100/100: results from larger CTE 
difference at the 347H/TZ interface

Ø Lowest stress for 80/60/50/40/20 transition zone

Ø In all cases highest stress observed at the 347H 
interface
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Next Steps

Residual stress measurements to be conducted at the 
High Flux Isotope Reactor (HFIR) and compared with the 
model

Burst testing underway

Ongoing study for process development to 
mitigate/minimize cracking in 347H

Samples being extracted for high temperature tensile 
testing and creep testing

347H Tube G91 TubeTZ
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DICTRA simulations to identify carbon depletion at interface
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Process parameter studies on 347H to eliminate cracking

• Effect of scan strategy (1-step vs 3-step) and power

• Optical microscopy and hardness were carried out on these 
builds.
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Effect of power and scan strategy on porosity and 
cracking in 347H

150W, 1 step 194W, 1 step 254W, 1 step

150W, 3 step 194W, 3 step 254W, 3 step
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Effect of power and scan strategy on hardness in 347H
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• No significant variations in hardness with changes in power, scan strategy.
• Considering minimal porosity for 254W and 1 step, subsequent builds were made by varying the powder flow rate.
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Process parameter studies on 347H to eliminate cracking –
Effect of powder flow rate

4 GPM , 194W 4 GPM , 254W

6 GPM , 254W

• Higher power with 1 step scan strategy and 
intermediate powder flow rate seems to provide 
microstructure with a relatively lower number of 
cracks.

• Modelling the solidification cracking to achieve 
an optimized process parameter underway.


