Environmental Validation of Materials and Design Concepts to Enable Operational Flexibility of Existing Coal Power Plants
Anand Kulkarni, Siemens Corporation
DOE Award: DE-FE-0031749
Acknowledgements

This material is based upon work supported by the Department of Energy Award Number DE- DE-FE- 0031749. Siemens would sincerely thank the support of Diane Madden, DOE FPM for this project. Also, Siemens thanks the team of Mike Kirka, Sebastien Dryepondt, Suresh Babu from Oak Ridge National Lab, Vanshika Singh from Uni. Of Tennessee, Knoxville and Nigel Simms and Kumar Patchigolla from Cranfield University for their valuable contribution to the project.

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Outline

Introduction

Project Objective and Team

Task 1 – Project Management and Planning

Task 2.0 - Data driven AM design and component manufacture

Task 3.0 – Pilot Scale Component trials
 o Subtask 3.1 – Operation of pilot scale combustion plants
 o Subtask 3.2 – Post-exposure component assessment

Task 4.0 – Thermal Efficiency Optimization

Task 5.0 - Data compilation and modelling for scale up opportunities

Project Schedule and Milestones

Technology Maturation Plan
Environmental Validation of Materials and Design Concepts to Enable Operational Flexibility of Existing Coal Power Plants

Project information

- **PI:** Anand Kulkarni
- **Funder:** DOE Office of Fossil Energy (FE) – NETL Crosscutting
- **Strategic Partner:** Siemens Gas and Power, Oak Ridge Natl Lab, Cranfield Uni.
- **Total Project Funding:** $2.5M ($2M Federal/$500K Cost Share)

Project Objectives

1. Topology optimization to redesign tubes, via additive manufacturing (AM), with multi-functionality to address creep-fatigue, steam oxidation on the inside and fireside corrosion on the outside for insights into performance improvements and time-consuming repairs.
2. Environmental relevant testing of conventional (tube, welds) and redesigned components to handle load changes, low load and/or cycling conditions for damage impact for input into techno-economic analysis to compare with conventional ASME Code approved materials/manufacturing processes.
3. Testing of technologies to improve plant efficiency including a) advanced topping cycles, and b) novel heat recovery schemes utilizing molten salt integration with absorption chillers.

Meet FOA Guidelines

<table>
<thead>
<tr>
<th>Power Plant Component Improvement</th>
<th>Objective of Proposed Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental testing of technologies for flexibility and efficiency</td>
<td>Relevant testing of design and operating parameters (load changes, low load and/or cycling conditions and advanced topping cycles) in small-scale (~100kWth) pilot plant at Cranfield University</td>
</tr>
<tr>
<td>Testing of techniques which shorten the length of time-consuming repairs</td>
<td>Additive manufacturing enables fast design-manufacturing iterations to produce near-net shapes, significantly reducing lead-time up to 50% from current baseline</td>
</tr>
<tr>
<td>Power plant component improvements</td>
<td>Topology optimization for boiler/HRSG tubes with multi-functionality to address creep/fatigue for cyclic operations, steam oxidation on the inside and fireside corrosion on the outside</td>
</tr>
<tr>
<td>Testing of thermal management (energy storage) technologies</td>
<td>Integration schemes for the turbine exhaust (low temperature heat source) to be cooled efficiently via nocturnal heat storage (eg. water) taking the advantage of drop in night time temperature. Or Li/Br based absorption chiller systems driven by thermal energy and waste heat.</td>
</tr>
</tbody>
</table>

- Demonstration of multiple approaches for increased efficiency/reliability of coal power plant on pilot test rigs at Cranfield University (UK).
- Demonstrate improved materials capability vs baseline for wide range of operations for existing power plants.

Unrestricted © Siemens AG 2019
The technical team is strong and has been working together for 15+ years.
Tube Experiences in Existing Coal Power Plants with Operational Flexibility

Developments focus particularly on generic boilers and heat exchangers in coal-fired power plants since boiler tube failures continue to be major cause of forced outages and statistically account for 6% of availability loss.

Unrestricted © Siemens AG 2019
Page 6
Kulkarni/ Siemens
• Single phase flow: High pressure steam inside the tube
• High pressure steam causes high hoop stresses and eventually leads to high creep
• Thermal fatigue is caused only due to the intermittent operation of the plant. Intermittent operation of the plant causes change in temperature of the steam inside the tube.

Exposed to high ash deposition causing corrosion; local thickening will help to improve the creep capability

• Need to have surface features without tips
• So how about an internal surface profile that is more undulating? (like a golf ball surface?)
Test Sample Geometry for Topology Optimization for functional Optimization

- Since, Deposition flux $\alpha \sin(\gamma)$
- Smaller impact angle -> smaller deposition flux
- Conical front or a tear-drop shaped front will lead to gradual decrease of impact angle
MPTO Application to Boiler Tube Anti-fouling & Increasing Heat Exchanger Efficiency – \textit{Problem set up}

Multiphysics Topology Optimization (MPTO) application to optimize external surface, combined with design of experiments for internal surface features

NEW! Thermal flow topology optimized (see next slide)
MPTO for **EXTERNAL** Surface Optimization - Results

BASELINE DESIGN

- Conjugate heat transfer analysis in STAR-CCM+
 - Pressure drop from inlet to outlet = 0.221 Pa
 - Mass flow averaged temperature at outlet = 1732 K

TOPOLOGY OPTIMIZED DESIGN

- Conjugate heat transfer analysis in STAR-CCM+
 - Pressure drop = 0.175 Pa
 - Mass flow averaged temperature at outlet = 1727 K → *Compared to 1732 K for baseline design*
AM Printed Geometries – LPBF IN625 in EOS M290-1

A. Baseline cylinder

B. UTK ext. surf design

C. Siemens dual thermal flow topology optimized ext. surf design

Samples currently at Cranfield
Task 3.0 – Pilot Scale Component trials

Operation of pilot scale combustion plants

Subtask will focus on using pilot test rigs to expose small-scale components in specific operating environments targeted at the simulation of those anticipated for flexible operating conditions. Two pilot scale test rigs will be used to target particular operating environments/conditions:

- one to investigate fireside issues
- one for steam-side issues.

By separating fireside and steam-side environmental exposures, it will be possible to simplify the trial component designs and provide mitigation options, e.g.:

- by control of exposure conditions to investigate the effects of specific exposure parameters (e.g. cycling environments/temperatures on fireside)
- by only applying external coatings on components for fireside tests and internal coatings on components for steam tests.
Subtask 3.1 – Operation of pilot scale combustion plants
A) Pulverized coal pilot scale combustion test update

Test runs:
 o Cyclic: Coal during day (8 h); natural gas overnight (16 h)
 o baseline

Combustion of pulverised coal - discussions about potential supply of a high S US coal with EDF Energy (from West Burton power station)

Series of cooled probes to be exposed hot combustion gas stream (details on next slide):
 o 12 probe locations with three different target surface temperature ranges and two exposure time
 o AM, welded and conventional materials

Pilot scale research facility:
 o logging of operational and exposure parameters, e.g.: gas / component temperatures; gas pressures; flue gas compositions.
 o combusted flue gas environment can be varied and controlled - e.g. by changing fuels, flue gas temperature, air/fuel ratio - to generate specific exposure conditions.
Component Exposures

Centre line of gas path

Gas path refractory wall

Access port

<table>
<thead>
<tr>
<th>Probe location</th>
<th>Probe number</th>
<th>Sample position</th>
<th>Target metal temp range (°C)</th>
<th>Exposure time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>AM# AM# AM# AM#</td>
<td>560-620</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Weld# Weld# Weld# Weld#</td>
<td>560-620</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>T22 T23 T91 T92</td>
<td>560-620</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>347HFG 304 310 HR3C</td>
<td>560-620</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>5A</td>
<td>T22 T23 T91 T92</td>
<td>560-620</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>5B</td>
<td>347HFG 304 310 HR3C</td>
<td>560-620</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>6A</td>
<td>AM# AM# AM# AM#</td>
<td>560-620</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>6B</td>
<td>AM# AM# AM# AM#</td>
<td>530-590</td>
<td>500</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>AM# AM# AM# AM#</td>
<td>530-590</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>T22 T23 T91 T92</td>
<td>530-590</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>347HFG 304 310 HR3C</td>
<td>530-590</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>10A</td>
<td>T22 T23 T91 T92</td>
<td>530-590</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>10B</td>
<td>347 304 310 HR3C</td>
<td>530-590</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>T22 T23 T91 T92</td>
<td>500-560</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>347HFG 304 310 HR3C</td>
<td>500-560</td>
<td>1000</td>
</tr>
</tbody>
</table>
Subtask 3.1 – Operation of pilot scale combustion plants

B) Steam oxidation test facility

This rig exposes steam/water cooled components in hot flue gases generated by natural gas / air combustion. The components are in the form of 1 m long tubes (with flanges welded at each end). Components connected in series of three in 2 test loops that operate in parallel. Each can be manufactured from a different material and internal coatings applied if required. Metal/steam temperatures set by the combustion air temperature and the steam/water flow rates. Rig operation/exposure conditions are monitored by a data logging system.
Task 3.1(B) Component Exposures and Operating Conditions for Tests

Components in the form of 1 m long flanged tubes
 - Tubes cross the hot combusted gas path
 - Tubes form part of steam circuit (~40 barg)
 - Tubes must satisfy insurance requirements for pressure vessels
 - As joints are flanged, each tube can be:
 - Manufactured from different materials
 - Changed during intermediate rig shut-downs

Tubes arranged in parallel steam paths
 - 3 tubes in each steam path
 - Steam heats up as it passes through tubes

Operational flexibility – to be discussed and agreed

- Cyclic exposure vs baseline (2 test series)
 - Exposure times – 1000 h, 2000 h?
- Cycling combusted gas temperatures
 - High/low (not on/off to avoid steam condensation issues)

Inside tube metal temperatures - ~500 – 600 °C (increasing along each steam path)
 - T22, T91, 347HFG, HR3C
 - additive manufacture?
 - Alternative shapes?

Tube example:
- length = 1 m
- Outside diameter = ~38 mm
- Inside diameter = ~28-30 mm
Revised Plan for PF Combustor and Steam Rig Operations (Task 3)

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF combustor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample manufacture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel sourcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rig configuration for this program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating condition evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 1 - cyclic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 2 - baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-exposure component analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam oxidation test rig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample manufacture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rig configuration for this program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating condition evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-exposure component analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schlieren Optics Setup: Experimental Setup to study flow behavior around the tube

Technique to visualize and study variation in flow of gases or change in air refractive index via a concave mirror, point source light, razor blade (light block), and a camera.

Principle of Schlieren Effect:

Change in the density of the fluid in front of the mirror causes change in the refractive index. For air and other gases, there is a simple linear relationship between the refractive index and the gas density, \(\rho \), given by \(n - 1 = k\rho \)

where \(k \) is known as the Gladstone-Dale coefficient

Vanshika Singh, S. Babu, ORNL/UTK
Schlieren Effect Videos

- Circular tube under Fan Heater
- Teardrop shape under Fan Heater
- Teardrop shape under whiteboard cleaner spray

• This is just to show the feasibility of the schlieren optic setup
• Need to accurately capture to show the particle flow around the tube.

Next Steps:
1. Making the Schlieren Optic Experiment more deterministic by using controlled flow of particle hitting the tube surface.
2. Making fixtures to hold the tube and nozzle sprayer.
3. Performing parametric shape optimization on the tube surface to have optimum geometric dimensions using COMSOL optimization module.

Unrestricted © Siemens AG 2019
Our Approach for Thermal Energy Storage for Fossil Plants

Improve

- Plant ramp rate is not depending on the boiler constraints
- Plant turn down is not limited by the combustion instability limits
- Flexible part-load operation as boiler and turbine are separated
- Enhances plant reliability
- Respond quicker during frequency response
- Plant start-up time is reduced

Research Questions

- What is the optimal plant configuration to integrate coal plant with TES in order to realise the benefits?
- What is the optimal temperature, size of storage to meet a particular objective?
- What type of TES is better suited for which purpose?
 - Direct steam accumulator
 - Direct feed-water storage
 - Indirect two-tank molten salt
 - Indirect molten salt-based Phase Change Material (PCM) selected based on the optimal integration temperature
230MW_e Sub-Critical Plant in USA

Turbo furnace coal fired two-pass boiler with natural circulation
What is the Capacity of two-tank TES?
230MW USA Plant

Available thermal capacity for charging depends on,
- plant operating load as a minimum steam turbine flow/pressure needs to be maintained, therefore, the optimal storage size depends on the typical plant load profile
- Charging configuration: E.g. HRH steam branching reduces the pressure at IPT inlet, thus, HPT PR increases (CRH temperature reduces and increasing the boiler RH duty), and IPT PR reduces (LPT inlet temperature increases). The effect is minimised if the IPT control valve maintains a fixed pressure. Increasing the % mass flow reduces the ΔT

Charging: ~23MW\text{th}, @50% load, ~47MW\text{th}, @ 100% load
- Inlet : HRH line, 32 bar, 538°C
- Return : IPT/LPT Cross-over Pipe, 11.8 bar, 390°C

Discharging: ~32MW\text{th}, @100% load, 12.5MW\text{th}, @50% load
- Stored heat from TES is used to heat the top HP FWH’s using additional heat exchangers
- Peak power is produced immediately due to more steam flow through the turbine, ~3.7% @ 100% load and ~1.6% @ 50% load

Optimal integration configuration that minimises the exergy destruction of both the process need to be investigated
500 MW UK Plant (West Burton Plant)

Plant Key Specification

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condenser Pressure</td>
<td>mbara</td>
<td>50</td>
</tr>
<tr>
<td>FW Heaters</td>
<td></td>
<td>3*LP+DA+3HP</td>
</tr>
<tr>
<td>FW exit Temperature</td>
<td>°C</td>
<td>250</td>
</tr>
<tr>
<td>MS Pressure</td>
<td>bar</td>
<td>158.6</td>
</tr>
<tr>
<td>MS Temperature</td>
<td>°C</td>
<td>565</td>
</tr>
</tbody>
</table>

Ultimate Analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>%wt</td>
<td>59.71</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>%wt</td>
<td>3.8</td>
</tr>
<tr>
<td>Oxygen</td>
<td>%wt</td>
<td>5.49</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>%wt</td>
<td>1.00</td>
</tr>
<tr>
<td>Sulphur</td>
<td>%wt</td>
<td>1.75</td>
</tr>
<tr>
<td>Chloride</td>
<td>%wt</td>
<td>0.55</td>
</tr>
<tr>
<td>Moisture</td>
<td>%wt</td>
<td>12.00</td>
</tr>
<tr>
<td>Ash</td>
<td>%wt</td>
<td>15.70</td>
</tr>
<tr>
<td>HHV</td>
<td>kJ/kg</td>
<td>24,643</td>
</tr>
</tbody>
</table>
Task 5: Scaleup and Technology Maturation Plan

Siemens’ Benson test rig

Operational Flexibility

<table>
<thead>
<tr>
<th>Highest efficiency</th>
<th>Use of all coal grades</th>
<th>Economical, low-stress operation</th>
<th>Flexible operating mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy</td>
<td>Suitable for subcritical and supercritical pressure without changing the evaporator system</td>
<td>Wide scope in design, e.g., oversized combustion chamber or slag tap furnace (shown)</td>
<td>Constant main steam temperature regardless of load, fuel and degree of fouling. Economical, low-stress start-up.</td>
</tr>
</tbody>
</table>

Technical data
- System pressure: 330 bar
- Temperature: 600°C
- Mass flow: 4 kg/s
- Heat capacity: 2,000 kW

Typical test parameters:
- Pressure: 25 ≤ p ≤ 280 bar
- Heat flux: 0 ≤ q ≤ 950 kW/m²
- Mass flux: 30 ≤ m ≤ 2,500 kg/(s·m²)
- Tube inner diameter: 8 ≤ d ≤ 50 mm

Unrestricted © Siemens AG 2019
Conclusions

- Design for additive manufacturing together with multiphysical topology optimization has been utilized to address critical failure mechanisms observed for tubes
- Redesigned tubes for optimized geometries printed using powder bed fusion and sent to Cranfield University for insertion into test matrix, together with existing materials
- Environmental testing of redesigned tubes with baseline tubes/welds will evaluate performance in specific operating environments targeted for cyclic operations of existing coal power plants.
- Rig testing for both combustion/steam oxidation testing delayed due to pandemic, to commence June 2021
- Thermodynamic modelling a TES system ongoing for charging/discharging opportunities to enable flexible operation of conventional plants.
 • Transient model development in Dymola® is under underway and the detail model of the two types of TES will be integrated to realise the enhancement in plant flexibility
 • Sensible heat 2-tank system, HP system
 • PCM storage
 • End deliverable is a comparison of TES approaches for US 230 MW and UK 500 MW coal power plants.