

Predictive Design of Novel Ni-based Alloys D.D. Johnson and M.J. Kramer Ames Laboratory, US-DOE, Ames, IA 50011

Project Description and Objectives

Develop new alloys that can perform at elevated temperatures in supercritical steam and CO_2 environment.

Use advanced computational tools, validated by targeted experiments, to increase operating temperature of Haynes-282 by 50°C

Enable AUSC to operate above 760°C and 5000 psi

Provide 'plug-in-play alloy' alloy compatible with current Ni-based alloy production.

Challenge is to develop an efficient, high fidelity multi-element alloy design tool

Current Status of Project

Modeling Approach

- Korringa-Kohn-Rostoker method and coherent potential approximation (KKR-CPA)
 - Highly efficient electronic structure method that allow for complex chemistries using smaller model sizes compared to DFT.
- Mean-field approximation of the T_m
 - Includes short-range ordering and clustering

Accurately models complex chemistries to predict phase stability

MES LABORATO

Singh, Prashant, Gupta, Shalabh, Thimmaiah, Srinivasa, Thoeny, Bryce, Ray, Pratik K, Smirnov, Andrei V, Johnson, Duane D & Kramer, Matthew J. Vacancy-mediated complex phase selection in high entropy alloys. *Acta Mater* **194**, 540-546 (2020).

The equation of state E(V) calculation for the fcc, bcc, and hcp phases for Haynes-282:

 $Ni_{0.567}Cr_{0.224}Co_{0.099}Mo_{0.052}Ti_{0.026}AI_{0.032}$

Current Status of Project

Modeling Validation

- Compare predicted values for
 - Phase stability
 - Melting Temperatures (T_m)
 - Elastic Moduli

Alloy Design Criteria

- Identify promising regions of phase space for:
 - $T_m \sim > 50^{\circ}C$ of Haynes 282
 - Elastic Moduli > 10% higher
 - Sufficient Cr, AI , (Si) for oxidation stability
 - Reduce Co (lower cost)

AMES LABORATO

IOWA STATE UNIVERSITY

Current Status of Project

Baseline Characterization of Haynes-282

- Alloy sheet from Haynes (also provided additional data on oxidation and microstructure)
 - Initial oxidation characteristics
 - Phase assemblages and T_m
 - **Elastic Moduli**

Alloy Selection and Testing

- Characterize alloys across prospective phase space
 - DSC, XRD, SEM, Ultrasound
- Further evaluate 'best samples' for

AMES LABORATORY

- Oxidation resistance
- **Mechanical properties**

20

9/6

2/2.3

1.5/1.8

Мо

Ti

AI

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

20 (°) XRD of the surface after 100 hrs

oxidation in dry air

700 ° C 100h

As received

70

Model Prediction

AMES LABORATORY

Investigate role of major element substitutions.

 Shaded regions show the extend to solid solution for each element (Ni, Co and Cr) in a fcc matrix compared to bcc and hcp)

Ni > 45 at. %: Co < 40 at. %: Cr < 35 at. %

Energies are shown relative to that of an elemental solid X in Haynes-282

Model Prediction

Investigate role of minor element substitutions.

 Shaded regions show the extend to solid solution for each element (Mo, Ti and Al) in a fcc matrix compared to bcc and hcp)

Mo < 17 at. %: Ti < 11 at. %: Al < 15 at. %

OF SCIENCE AND TECHNOLOGY

Role of refractories

Formation Enthalpy

The calculated formation enthalpy (E_{form}) with experimentally-determined melting temperature (T_m) for common Haynes alloys. Similar trends were seen with Mo (less dramatic) and Re (more dramatic).

Role of Fe, Hf, Nb, Si, V incorporated into the 2nd generation

Role of refractories on bulk moduli

Haynes-282 bulk moduli was calculated (●) and compared to experimental data (□).

Calculation overestimated by ~ 8-20 GPa (within 10%)

Model alloy $Ni_{65}Cr_{12}Co_5Al_3Ti_3X_{10} X = Mo, Re, W$

- Understand role of refractory elements
 - Moduli and T_m increased with increasing valance electrons
 - Are there chemical substitutions that can mimic this effect?
 - Necessary to reduce cost and density

Similar trends were seen with Mo (less dramatic).

Role of refractories on phase stability

1st Generation

Experimental (DSC)melting data compared to Haynes-282.

Model alloys selected to validate specific predictions

Ti > 3% and refractories > 5% resulted in bcc phases

Deviation from prediction

Role of refractories on phase stability

Experimental and calculated T_m onsets of 1st generation samples compared to Haynes 282.

Alloys fabricated and characterized to validate model predictions.

- Model didn't correctly predict T_m for phase separate samples
 - Identified limits for the high T solid solution
- Model captured the trends in T_m for Mo, Re and W.

Refined suite of compositions

1st Generation alloy

2nd Generation alloy

2nd generation results

- Target compositions w/ fcc matrix
- Investigate larger range
 of Ni, Co and Cr
- Include B, C, Fe and Si

	T	1				(200)	Ń	I
					NISA29A HT	~	Ni ₆₇ Cr ₁₇ Co ₄ (AlTiFe	SiC) ₁₂ (Mo _{2.5} W _{2.5})
	4	8			NISA28A HT		Ni ₆₇ Cr ₁₇ Co ₄ (AlTiM	oFeSiC) ₁₂
NISA12	A_AC		Ni ₇₀ Cr ₁₃ Co ₅ Al ₃ Ti ₂ Re ₅		NISA27A_HT		Ni ₆₇ Cr ₁₅ Co ₆ (AlTiM	oFeSiC) ₁₂
NISA11	A AC		Ni ₇₀ Cr ₁₃ Co ₅ Al ₃ Ti ₂ W ₅		NISA26A_HT		Ni ₆₅ Cr ₁₅ (CoAlTiMo	FeSiC) ₂₀
NISA10	NISA10A_AC NISA9A_AC NISA8A_HT		Ni ₇₀ Cr ₁₃ Co ₅ Al ₃ Ti ₂ Mo ₅	n (NISA25A_HT		Ni ₆₇ Cr ₁₃ (CoAlTiMo	FeSiC) ₂₀
NISA94		h	Ni _{75.6} Cr _{11.63} Co _{5.81} Al _{3.5} Ti _{3.5}	a.	NISA24A_HT		(NiAlTiMoFe) ₇₉ Cr ₁	₃Co ₈
			Ni ₆₉ Cr ₁₀ Co ₅ Al ₃ W ₅ Re ₅ Ti	₹ T	NISA23A_HT		(NiAlTiMoFe) ₇₉ Cr ₁	₈ Co ₃
			NiCrCo-Al-ReTi	- isc	NISA22A_HT		(NiAlTiMoFeSi) ₇₉ C	r ₁₃ Co ₈
sit sit				ter –	NISA21A_HT		(NiAlTiMoFeSi) ₇₉ C	r ₁₆ Co ₅
	HT A		NI ₆₉ Cr ₁₀ Co ₅ Al ₃ W ₁₀ H ₃		NISA20A_HT	A	(NiCrCoAlTi) ₉₃ Mo	Fe ₁ Si _{0.5} C _{0.25} B _{0.25}
L NISA5			Ni ₆₅ Cr ₁₂ Co ₅ Al ₃ W ₈ Ti ₇		NISA19A_HT		(NiCrCoAlTi) ₉₃ Mo	Fe ₁ Si _{0.5} C _{0.}
NISA4/			Ni ₆₅ Cr ₁₂ Co ₅ Al ₃ Re ₈ Ti ₇		NISA18A_HT		(NiCrCoAlTi) ₉₃ Mo	Fe ₁ Si ₁
NISA34	_нт		Ni ₆₅ Cr ₁₂ Co ₅ Al ₃ W ₃ Re ₈ Ti ₄] 1	NISA17A_HT		(NiCrCoAlTi) ₉₅ Mo	2.5W _{2.5}
NISA24	НТ		Ni ₆₅ Cr ₁₂ Co ₅ Al ₃ W ₈ Re ₃ Ti ₄		NISA16A_HT		(NiCrCoAlTi) ₉₅ Mo	
NIISA 1/				-	NISA15A_HT		(NiCrCoAlTi) ₉₃ Re ₅ I	-e ₂
INISA IA					NISA14A_HT		(NiCrCoAlTi) ₉₃ W ₅ F	e ₂
H282		/	~Ni ₅₆ Cr ₂₂ Co ₁₀ Al _{3.3} Mo ₅ Ti _{2.5}	-	NISA13A_HT		(NiCrCoAlTi) ₉₃ Mo	Fe ₂
40	50	60	70	 80 4		50	60	70
		2θ (deg.)				20 (dea.)	

fcc, bcc and $L1_2$ phases present

Nearly single phase fcc, as cast show texturing along [200]

Refined suite of compositions

onset

peak

end

cal

2nd generation results

- Increased T_m
- Narrow the range of melting

10	Compare the second s		Melting T					
שו	Composition	Onset	Peak	End				
H282	$Ni_{55.3}Cr_{21.9}Co_{9.7}AI_{3.2}Ti_{2.2}Mo_{5.0}Fe_{1.5}Mn_{0.3}Si_{0.3}C_{0.3}$	1329.5	1362.7	1369.9				
13A	(NiCrCoAlTi) ₉₃ Mo ₅ Fe ₂	1380.3	1404.4	1410.6				
14A	(NiCrCoAlTi) ₉₃ W ₅ Fe ₂	1407.0	1435.7	1441.4	⊢ Mo-W-Re			
15A	(NiCrCoAlTi) ₉₃ Re ₅ Fe ₂	1411.3	1441.7	1460.5	Fe, Cr:Co			
16A	(NiCrCoAlTi) ₉₅ Mo ₅	1362.6	1388.8	1393.7	MasiM			
17A	(NiCrCoAlTi) ₉₅ Mo _{2.5} W _{2.5}	1380.4	1407.7	1413.1				
18A	(NiCrCoAlTi) ₉₃ Mo ₅ Fe ₁ Si ₁	1351.4	1386.0	1392.9				
19A	(NiCrCoAlTi) ₉₃ Mo ₅ Fe ₁ Si _{0.5} C _{0.5}	1356.8	1382.5	1389.5	 Adding Si-C-B 			
20A	(NiCrCoAlTi) ₉₃ Mo ₅ Fe ₁ Si _{0.5} C _{0.25} B _{0.25}	1376.7	1389.0	1395.0				
21A	(NiAlTiMoFeSi) ₇₉ Cr ₁₆ Co ₅	1352.9	1384.3	1389.7				
22A	(NiAlTiMoFeSi) ₇₉ Cr ₁₃ Co ₈	1366	1383.6	1399.6	Fo Sim/Crico			
23A	(NiAlTiMoFe) ₇₉ Cr ₁₈ Co ₃	1362.4	1388.2	1392.9	Fe, SI W/ Cr:CO			
24A	(NiAlTiMoFe) ₇₉ Cr ₁₃ Co ₈	1376.8	1402.5	1408.2				
25A	Ni ₆₇ Cr ₁₃ (CoAlTiMoFeSiC) ₂₀	1357.5	1391.5	1396.7	Nii·Cr			
26A	Ni ₆₅ Cr ₁₅ (CoAlTiMoFeSiC) ₂₀	1350.3	1386.1	1393.9	NI.CI			
27A	Ni ₆₇ Cr ₁₅ Co ₆ (AlTiMoFeSiC) ₁₂	1351.6	1387.3	1395.5	Cr:Co Ni:Cr:Co			
28A	Ni ₆₇ Cr ₁₇ Co ₄ (AlTiMoFeSiC) ₁₂	1356.0	1378.8	1386.0				
29A	Ni ₆₇ Cr ₁₇ Co ₄ (AlTiFeSiC) ₁₂ (Mo _{2.5} W _{2.5})	1388.7	1400.0	1403.9				

stoichiometries are fixed for elements in the parentheses for each grouping

Refined suite of compositions for down selection process

- Identified a broad range of compositions with T_m > 50°C of Haynes 282
 - RT Moduli is effective criteria for further down selection.
 - Ideal for implementing advanced search algorithm and machine learning for optimization

Samples 20, 24 and 29 were selected for further study

2nd Generation

Highlighted samples have the highest T_m

Down Selection

Baseline Characterization-Haynes 282

Oxidation (TGA)

- Synthetic air, 760, 800, 900 & 1000 °C isothermal holds 20-100 hrs
- Two-step steady state oxidation
 - How does changes in alloy composition alter the transient and steady-state oxidation?

Cross-sectional SEM

- ~10 µm continuous oxide layer
 - Primarily Cr₂O₃, TiO₂ and NiO (XRD)
 - Oxide penetration (~20 μm), mostly Al₂O₃, No MoO₃

AMES LABORATO

Electron back-scatter image (top) and elemental EDS maps for Haynes-282 after oxidation at 760 °C/100h

IOWA STATE UNIVERSITY

Oxidation: Haynes 282 vs Ames 20, 24 & 29 at 800°C

- Excellent oxidation for Ames #20, 29 samples.
- Even with less Cr, Co, the scale on #20, 29 seems to be more protective at 800°C.
- Ames 24 shows how small changes in Cr, Si can have profound changes in oxidation resistance.

Next Steps

In depth analysis of the down-selected alloys

- Role of Mo:W on:
 - T_m and moduli
 - Relationship between calculated moduli and yield strength
- Role of Ni:Cr:Co
 - Small changes also have large effects on $\rm T_{\rm m}$ and moduli
- Roles of B,C, Si
 - Dramatically effect short term oxidation

High Temperature tensile and creep strength

- Optimize aging protocols
 - Role of t, T and minor alloy content on carbide formation and $\gamma"$

Evaluate oxidation resistance compared to Haynes 282

- Perform 100 hrs oxidation test in dry air at 760, 800 and 900°C
- Extended oxidation test in dry and wet at 800°C

Challenges

Predicting lifetime performance

- KKR-CPA is accurately predicting overall alloy performance for complex chemistries
 - Range of Stability
 - Moduli (as a function of T)
- Can we extend these methods to predict stability at elevated T?
- Need rapid screening methods to predict alloy performance under realistic conditions including:
 - Corrosion/oxidation
 - Creep
 - Aging

Ames has developed a small punch test to rapidly evaluate small sample creep properties up to 1350°C.

Preparing Project for Next Steps

Market Benefits/Assessment

- Increase operating T of Haynes-282 by 50°C
 - Higher operating efficiencies
 - Longer lifetime
- Materials failures represent a significant fraction of power plant operating costs.
- Accurate and efficient modeling can reduce time to market.

Technology-to-Market Path

- Adoption: The optimized alloy's fabrication will fit into existing plants.
- Remaining technology challenges: Life-time assessment.
- New research: Develop methods to predict phase evolution/formations under operating conditions
- Haynes is providing materials and data.

Concluding Remarks

- Computationally efficient multi-elemental approach validated for Ni-based alloys will enable FE to address these challenges:
 - Development of new alloy materials that have the potential to improve the performance and/or reduce the cost of existing fossil fuel technologies.
 - Development of materials for new energy systems and capabilities.
 - Development of refractory alloys to withstand even higher temperatures and aggressive environments.
- Current approach optimizes alloy composition based on phase stability and elastic moduli.
 - Model identified a broad range of promising compositions.
 - Developing suite of characterization tools to rapidly assess promising candidate compositions.

Acknowledgment

"This material is based upon work supported by the Department of Energy Award Number AL-19-510-097."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

