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Background/Objectives

 Develop/improve physics-based simulation tools to describe all
steps of the AM process

e Use simulation + real-time process monitoring to establish
correlation between process-structure-property and “locally”
conftrol the alloy properties

Grain structure prediction In-situ Crack detection via Near IR In-situ
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Improving Approach/Physic-Based Models For Process-
Microstructure-Properties Correlation

v Linking of Microstructure to Performance

FEM
DREAM 3D l

v Linking of Process to Microstructure

. Melt Pool
Particle ®_  Temperature

model

Truchas (FVM)

I Abaqus (FEM)

New Point Net Melt [ Crystal Plasticity
Beam Strategies Pool
Microstructure
Performance
g'l Analytical prediction

g Kinetic Monte Carlo Model (KMC)

« Synthetic microstructure created « Synthetic microstructure being

based on the processing condifions used for performance simulation

* Image analysis/Correlation statistics
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New Point Net Beam Strategies to Control Thermal
Gradients, Solidification Rates and Microstructures

* Physics is contained in heat transfer response
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Controlling the Microstructure 1o Reduce EBM282 Creep
Anisotropy CIT 300°C
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Superior creep strength with columnar grains along the build direction
(BD) but significant creep strength decrease perpendicular to BD
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Variation of Fatigue Crack Growth in EBM 282 Composite
Microstructure

Constant AK=20ksi*in%> tests
Paris Law: da/dN = C(AK)"
Hence da/dN = f(microstructure alone)
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Crystal Plasticity Model Reveals Microstructure Influence
on FOﬂgUG CrQCk Prop(]g(jﬂon Simulated microstructure

» Crystal plasticity finite element model
(CPFEM) predicts the effect of grain
size, grain morphology and texture
on the heterogeneous deformation in
the microstructure

precrack
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Crystal Plasticity Model Predicts Different Crack
Propagation Paths for Coarse and Fine Regions

Crack surface in coarse region

Straight and
smooth crack path

[
L )

CPFEM simulated crack path

Fractography of fatigue crack surfaces

>~

Demonstrate opportunity for local control of properties Crack surface in fine region

through microstructure control for complex components
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Synthetic Microstructure to Accelerate Process-

Microstructure-Performance Correlation
Process-Microstructure Microstructure-Performance

Using Kinetic Monte Carlo Model
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Machine Learning Surrogate Model for Emulating AM Ni-

base Superalloy Viscoplastic Behavior

Gamma channel
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Equiaxed Grain Clusters Found in AM Microstructures
Results in Local Strain concentration
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AM materials can
contain heterogenous
‘stray grains’ which
crack during creep
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Creep properties anisotropy likely related to crystallographic texture and heterogenous
stray grains leading to local stress concentration
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Extract Maximum Constitutive Information From Experiments

Utilizing Correlation Stafistics
e ~ Collaboration with DOE

VTO Propulsion Material
Core Program
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e Successful estimate of strain from microstructure

» Tools can be used for microstructure/properties or damage
correlation for tensile, creep, fatigue, oxidation, etc.
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Understanding Crack Formation in High Gamma Prime
Alloys for Crack-free Components

Crack Formation Modeling (EERE-AMO/FE) Looking at new alloys
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Cracking Prediction during AM Process

EBM sample Cracks Fracture surface
Z = Bulld Direction :

Hot cracking susceptibility

HOT
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Chauvet, Edouard et al. "Hot cracking mechanism
affecting a non-weldable Ni-based superalloy produced
by selective electron Beam Melting." Acta

Materialia 142 (2018): 82-94.
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Developing Advanced Sensor & Machine Learning

Archl’rec’rure for Near Real- Tlme Process Control
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Conclusion/Future Work

Significant progress in developing modeling/data analytics tools for
process-microstructure-properties correlation

Latent High Res EBSD
EBSD maps  mjcrostructure  Deformation

\i representation  Misorientation

" crack path

Strain/deformation localization
CNN architectures for learning stress- estimates via FEA plasticity

microstructural localization relationships

« Add complexity to the synthetic microstructure i.e. precipitates
« Upgrade/modify tools for large scale AM

 AM Microstructure control for specific application (e.g. H)
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