

Correlating materials microstructure chemistry and performance in austenitic stainless steels

L.Capolungo

M. Arul Kumar, R.Lebensohn, N. Beets, Q.Q. Ren, Y. Yamamoto, M.P. Brady, J.A. Hawk, Q.Q. Ren, Jon Poplawsky, David Hoelzer, Yuki Yamamoto, Mike Brady, Edgar Lara-Curzio, Misha Glazoff, Jianguo Yu, Feng Zhang , Michael Gao

OAK RIDGI

Lawrence Livermore National Laboratory

extremeMat: Objectives

General scope: XMAT will develop, verify and validate research tools that help the US industry in (i) assessing the failure of steel components subjected to complex non-monotonic loading, (ii) adopting emerging/new steels.

Applications to: conventional austenitic (**347H**, 316H) and ferritic steels (**P91**), **XMAT X351**..

Conditions: Temperatures from ~500 to 750C, Maximum stresses 100MPa, oxidation in air

Impact: Reduce the time and cost for alloy qualification and certification.

Computational workflow

extremeMAT Accelerating the Development of Extreme Environment Materials

XMAT: accomplishments

U.S. DEPARTMENT OF Accelerating the Development of Extreme Environment Materials

> ρ ratio=0.4 ρ ratio=0.7

> ρ ratio=1.0

3x10⁷

2x10⁷

LaRupture: N.Bieberdorf et al. Submitted to IJP LaRomance: Kumar et al .in preparation

ATIONAL

Aging and chemical composition have not been accounted for though. This is the focus of this presentation.

Lawrence Livermore National Laboratory

XMAT: accomplishments

TIONAL

Lawrence Livermore

Approach

extremeMAT Accelerating the Development of Extreme Environment Materials

Materials processing and characterization: The role of aging and chemistry

Understanding materials aging: DFT and Prisma simulations Predicting the relationship between microstructure, chemistry and creep response

MESLABORATORY

ATIONAL

Approach

eXtremeMAT Accelerating the Development of Extreme Environment Materials

Materials processing and characterization: The role of aging and chemistry

ATIONAL

Understanding materials aging: DFT and Prisma simulations Predicting the relationship between microstructure, chemistry and creep response

Processing, aging and testing different grades

extremeMAT Accelerating the Development of Extreme Environment Materials

- Multiple 347H heats:
 - VIM + TMT + Solution-annealed at 1100°C
 - Fully recrystallized austenite grain structure
 - Primary coarse NbC dispersed
 - Applied additional aging at (at 750°C)
- Predicted <u>phase equilibrium</u> by a thermo-dynamic calculation (ThermoCalc w/TCFE9):
 - At 1100°C: FCC-Fe + NbC
 - At 750°C: FCC-Fe + NbC + Sigma
 - Secondary NbC for strengthening
 - > Meta-stable $M_{23}C_6$ is also expected
- Prediction of precipitation kinetics:
 - Nucleation and Growth

IATIONAL

· Compared with experimental results

A 347H plate delivered

Lawrence Livermore National Laboratory

As-received microstructure (OM)

NATIONAL LABORATOR'

	Alloy name	Ar	nalyzed o	chemist	ry, wt.%	% (B and	Demerko			
Heat ID		С	Cr	Mn	Nb	Ni	Si	В	Ν	Remarks
19-A75	347H	0.0508	18.52	0.98	0.39	11.03	0.5	<5	22	High purity, creep tested at ORNL
19-A92	347H	0.0561	18.23	0.91	0.52	10.92	0.44	<5	56	High purity, for tube creep tests
20-A2	347H	0.0541	18.72	0.98	0.3	10.84	0.44	<10	8	High purity, tensile and creep at NETL
20-A18	347H	0.0545	18.36	0.93	0.54	11.02	0.45	<5	11	Additional high purity 347H
19-A93	347H-N	0.056	18.38	0.91	0.53	11.06	0.4	<5	184	N added, for tube creep tests
20-A19	347H-N	0.0531	18.37	0.93	0.51	10.97	0.42	<5	163	N added, tensile and creep tests
20-A20	347H-N+B	0.0553	18.38	0.92	0.57	10.97	0.46	11	168	B + N added, tensile and creep tests
NIMS-CDS (28B)	Max.	0.07	18.05	1.82	0.82	12.55	0.88	27	284	Available at
	Min.	0.05	17.26	1.66	0.49	12	0.72	3	160	https://smds.nims.go.jp/creep/en/

CAK RIDGE

Processing, aging and testing different grades

• Multiple 347H heats:

- VIM + TMT + Solution-annealed at 1100°C
 - Fully recrystallized austenite grain structure
 - Primary coarse NbC dispersed
- Applied additional aging at (at 750°C)
- Predicted <u>phase equilibrium</u> by a thermo-dynamic calculation (ThermoCalc w/TCFE9):
 - At 1100°C: FCC-Fe + NbC
 - At 750°C: FCC-Fe + NbC + Sigma
 - Secondary NbC for strengthening
 - Meta-stable M₂₃C₆ is also expected

MES LABORATORY

- Prediction of precipitation kinetics:
 - Nucleation and Growth

NATIONAL

CHNOLOGY

 Compared with experimental results

A 347H plate delivered

Lawrence Livermore National Laboratory

As-received microstructure (OM)

ic Northwes

NATIONAL LABORATORY

	Alloy name	Ar	nalyzed c	hemist	ry, wt.º	% (B and	Demerko			
Heat ID		С	Cr	Mn	Nb	Ni	Si	В	Ν	Remarks
19-A75	347H	0.0508	18.52	0.98	0.39	11.03	0.5	<5	22	High purity, creep tested at ORNL
19-A92	347H	0.0561	18.23	0.91	0.52	10.92	0.44	<5	56	High purity, for tube creep tests
20-A2	347H	0.0541	18.72	0.98	0.3	10.84	0.44	<10	8	High purity, tensile and creep at NETL
20-A18	347H	0.0545	18.36	0.93	0.54	11.02	0.45	<5	11	Additional high purity 347H
19-A93	347H-N	0.056	18.38	0.91	0.53	11.06	0.4	<5	184	N added, for tube creep tests
20-A19	347H-N	0.0531	18.37	0.93	0.51	10.97	0.42	<5	163	N added, tensile and creep tests
20-A20	347H-N+B	0.0553	18.38	0.92	0.57	10.97	0.46	11	168	B + N added, tensile and creep tests
NIMS-CDS (28B)	Max.	0.07	18.05	1.82	0.82	12.55	0.88	27	284	Available at
	Min.	0.05	17.26	1.66	0.49	12	0.72	3	160	https://smds.nims.go.jp/creep/en/

CAK RIDGE

National Laboratory

os Alamos

NATIONAL LABORATORY

Tensile and Creep Tests

eXtremeMAT Accelerating the Development of Extreme Environment Materials

Temperature, °C

Idaho

Pacific Northwest

NATIONAL LABORATORY

Test Type	Test Conditions	Specimen Condition
Tanaila Taat	RT to HT (up to 800°C)	Solution-Annealed
Tensne Test	RT and 750°C	Aged at 750°C (for 336 h)
Stress Relaxation Test	300°C	Aged at 750°C (for 336 h)
Creep-Rupture Test (Uni- Axial)	600–800°C, 50–265 MPa	Solution-Annealed
Creep Stress-Jump Test	750°C, 25–45 MPa	Aged at 750°C (for 336 h)
Pressurized Tube Creep Test (Multi-Axial)	700°C, pressure (multi- axial stress), + tension	Solution-Annealed

Tensile and Creep Tests

eXtremeMAT Accelerating the Development of Extreme Environment Materials

Creep-rupture properties (ORNL/NETL)

Signature of dynamic strain aging caused by interstitial and substitutional solutes

Test Type	Test Conditions	Specimen Condition
Toncilo Toot	RT to HT (up to 800°C)	Solution-Annealed
Tensile Test	RT and 750°C	Aged at 750°C (for 336 h)
Stress Relaxation Test	300°C	Aged at 750°C (for 336 h)
Creep-Rupture Test (Uni- Axial)	600–800°C, 50–265 MPa	Solution-Annealed
Creep Stress-Jump Test	750°C, 25–45 MPa	Aged at 750°C (for 336 h)
Pressurized Tube Creep Test (Multi-Axial)	700°C, pressure (multi- axial stress), + tension	Solution-Annealed

Microstructure Response in 347H During Isothermal *extremeMAT* Aging at 750°C

Lawrence Livermore National Laboratory

OS

Alamo

- Age hardening was observed
 - Hardness dropped after 168h
 - M₂₃C₆ gradually disappeared after the peak, instead sigma started to appear
 - No changes in primary NbC

MESLABORATORY

NATIONAL

CAK RIDGE

NATIONAL LABORATORY

New 347H Heats Reveal Roles of N and B in Precipitation Kinetics

- Uni-axial creep-rupture tests at 600-800°C:
 - At ORNL/NETL

ATIONAL

- Isothermal aging of 347H-N and 347H-N+B at 750°C:
 - Hardness measurement
 - Microstructure characterization

Lawrence Livermore National Laboratory

05

Alamos

- N addition did not change as-received microstructure
- + B addition increased the stability of $M_{23}C_6$ at 750°C

NATIONAL LABORATOR

CAK RIDGE

Approach

eXtremeMAT Accelerating the Development of Extreme Environment Materials

NATIONAL LABORATORY

Materials processing and characterization: The role of aging and chemistry

MESLABORATORY

ATIONAL

Atom of **B** at interface reduces fcc-Fe/M₂₃C₆ interface energy by 0.1 J/m²- very significant value

Fe is projected onto the Cr-C layer.

TIONAL

- Confirmed Fe prefers the "hollow" positions.
- B significantly promotes covalent bonding between Fe-C.

 Key Conclusion: several ppm's of B promote *interface ordering* and increase stability of precipitates.

Interface energy reduction
reflects change in phase stability
and in lattice misfit for interface,
enhancing creep retardation

OAK RIDGE

Primary and Secondary Nb(C,N) Particles Bimodal Distributions at 700°C

A pre-existing size distribution of primary NbC is introduced

Bimodal Size Distributions of Primary and Secondary Nb(C,N) Particles: time 1h; 10h; 100h;1000h; and 2000h

1.0

NATIONAL LABORATOR

1.2

1.4

1.6

Predictions of aging kinetics and validation against experimental data

good agreement with experimental data. The evolution volume fraction of M23C6 is consistent with microstructure characterization.

Prisma simulations are in

-

90

120

1000

05

Lawrence Livermore National Laboratory

150

10000

Alamos

CAK RIDGE

The model accurately predicts _ the dissolution of M23C6 to the benefit of the sigma phase.

NATIONAL LABORATOR

Approach

eXtremeMAT Accelerating the Development of Extreme Environment Materials

A model predicting tensile and creep responses simultaneously

- An Advanced polycrystal model was derived to predict the effects of precipitates (M23C6, sigma phase,NbC) and solutes (Cr, Ni) on the mechanical response of 347H like materials.
- All know deformation mechanisms are taken into account
- The model is sensitive to temperature, stress, microstructure and major elements concentration.
- The model can acceptably capture both the creep and uniaxial response of 347H for varying temperatures

A first synthetic deformation map

NATIONAL

20

Quantifying the effect of microstructure on the creep response

Case 1: As received 347H steel

 $\rho_{cell} = 5 \times 10^{12} m^{-2}; \rho_{CW} = 1 \times 10^{11} m^{-2}$

 $N_{NbC} = 3.5 \times 10^{17} m^{-3}; D_{NbC} = 330.0 nm$

 $\frac{\text{Case 3: Aged at 750C for 336h}}{\rho_{cell} = 2 \times 10^{12} m^{-2}; \rho_{CW} = 1 \times 10^{11} m^{-2}}$ $N_{NbC} = 3.5 \times 10^{17} m^{-3}; D_{NbC} = 330.0 nm$ $N_{NbC}^{s} = 1.0 \times 10^{17} m^{-3}; D_{NbC}^{s} = 55.0 nm$

Case 2: Heat treated but not fully aged

 $\rho_{cell} = 2 \times 10^{12} m^{-2}; \rho_{CW} = 1 \times 10^{11} m^{-2}$

 $N_{NbC} = 3.5 \times 10^{17} m^{-3}; D_{NbC} = 330.0 nm$

Quantifying the effect of microstructure on the creep response

Case 1: As received 347H steel

 $\rho_{cell} = 5 \times 10^{12} m^{-2}; \rho_{CW} = 1 \times 10^{11} m^{-2}$

 $N_{NbC} = 3.5 \times 10^{17} m^{-3}; D_{NbC} = 330.0 nm$

Case 3: Aged at 750C for 336h $\rho_{cell} = 2 \times 10^{12} m^{-2}; \rho_{CW} = 1 \times 10^{11} m^{-2}$ $N_{NbC} = 3.5 \times 10^{17} m^{-3}; D_{NbC} = 330.0 nm$ $N_{NbC}^{s} = 1.0 \times 10^{17} m^{-3}; D_{NbC}^{s} = 55.0 nm$

OS

Alamo

Case 2: Heat treated but not fully aged

 $\rho_{cell} = 2 \times 10^{12} m^{-2}; \rho_{CW} = 1 \times 10^{11} m^{-2}$

 $N_{NbC} = 3.5 \times 10^{17} m^{-3}; D_{NbC} = 330.0 nm$

22

eXtremeMA Effect of microstructure on changes in the creep-rate Accelerating the Development

CHNOLOGY

OS

Alamos

NATIONAL LABORATORY

EST.1943 -

National Laboratory

23

Pacific Northwest

NATIONAL LABORATORY

U.S. DEPARTMENT OF

Chemistry effect: % Cr content

Lawrence Livermore National Laboratory

National Laboratory

AMES LABORATORY

iols & Energy Solutions

Pacific Northwest

NATIONAL LABORATORY

24

CAK RIDGE

National Laboratory

os Alamos

NATIONAL LABORATORY

EST.1943 -

Simulation of cyclic loading

NATIONAL

ABORATORY

MES LABORATORY

U.S. DEPARTMENT OF ENERGY

ials & Energy Solution

Conclusion

eXtremeMAT Accelerating the Development of Extreme Environment Materials

LaRupture: Models that predict the failure of steels as a function of microstructure (P91, 347H in progress)

LaRomance[©] : The suite of constitutive models for plasticity in extreme environments

LaMap: An experimentally validated (partially) predictor of the effects of microstructure and chemistry on the creep response of 347H steels

MES LABORATORY

Lawrence Livermore National Laboratory

OS

Alamos

VATIONAL LABORATORY

ic Northwes

NATIONAL LABORATORY

CAK RIDGE

National Laboratory

