Advanced Alloy Development Field Work Proposal

Research Team
Jeffrey Hawk, Omer Dogan, Edward Argetsinger, Tianle Cheng, Casey Carney, Corinne Charlton, Christa Court, Martin Detrois, Michael Gao, Volker Heydemann, Paul Jablonski, Kaimiao Liu, Tau Liu, Joseph Mendenhall, Paul Myles, Richard Oleksak, Zongrui Pei, Jeffrey Oberfoell Christopher Powell, Kyle Rozman, Erik Shuster, Irene Spitsberg, Chantal Sudbrack, Kristin Tippey, Michael Verti, Youhai Wen, Fei Xue, Margaret Ziomek-Moroz, Marisa Arnold-Stuart, and Travis Shultz

Acknowledgement
This work was performed in support of the U.S. Department of Energy Office of Fossil Energy’s Crosscutting Technology High Performance Materials Research Program, Robert Schrecengost DOE-HQ Program Manager and Briggs White NETL Technology Manager.

Disclaimer
This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Program Focus*

- Robust domestic supply chain
- Prediction & Repair to manage flexible fleet of generators that enable high penetration of renewables into the grid
- Low-cost, high performance alloy development to enable the next generation Natural Gas Combined Cycle plants and the Hydrogen economy

*https://netl.doe.gov/coal/high-performance-materials

Advanced Alloy Development FWP
Affordable, Durable High-Performance Alloys.

- Techno-Economic & Market Assessments
- Alloy Development & Manufacturing
 - Simulate and Manufacture of Large-Scale Ingots
 - Cast Versions of Wrought Superalloys
 - Large Area Additive Manufacturing
 - Manufacturing of Compact Heat-Exchangers
 - Ni-, Fe- Alloy Development
- Materials Performance in Harsh Environments
 - Creep & Creep-Fatigue (LCF) modeling
 - Materials Performance in sCO$_2$ cycles
Tuesday, June 15, 2021

- **1:20 PM**: Materials Performance in sCO$_2$ Environments, Omer Dogan
- **2:20 PM**: Design Tool for Creep-Resistant Materials and Low Cycle Fatigue Modeling, Youhai Wen
- **2:40 PM**: Simulate and Manufacture of Large-Scale Ingots & Summary of Past Ni-Alloy Development Work, Paul Jablonski

Eastern Daylight Time
Techno-Economic & Market Assessments

Research Guidance and Direction

Strategic Systems & Analysis Engineering

Previous Accomplishments

• High Performance Alloy Applications In Adjacent Markets
• Understanding the Supply Chain of Advanced Alloys
• Benefits of Advanced Materials for Boiler Tubes
• Export Potential for High-Performance Materials
• GADS Failures subsets analysis for boiler tubes, turbine, and balance of plant.

System Studies & Benefit Analyses
Reports on NETL’s web site
https://netl.doe.gov/crosscutting/publications
Current Effort

Assessment of Advanced Alloy Opportunities for Natural Gas Combined Cycle (NGCC) Plants and \(H_2 \) Production

Identify how can advanced materials contribute to improved performance and reduced cost in NGCCs

- With and without CCS
- Interest in not only efficiency, but cyclability, reliability, service life, etc.
- Identify parameters of interest.
- Establish SOA design features, materials, and performance.
- Identify materials-driven opportunities for improvement - informed by literature and consultants.

Contact: Travis Shultz (travis.shultz@netl.doe.gov)
Assess the economic benefit of novel manufacturing approaches in production of key, cost-driving components of the advanced power system and identify R&D challenges to realizing these benefits.

- Explore the most rapid path to market being used in current AUSC designs
- Investigate near-net-shape manufacturing techniques to reduce post-processing of large cast parts
- Study manufacturing one-off parts, reducing inventory, reducing wait times, and modification of larger parts in power plants

Contact: Erik Shuster (erik.shuster@netl.doe.gov)
Improve Electro-slag-remelting (ESR) ingot quality & melt efficiency.

- Optimize melt parameters (and alloy/slag compositions) to maximize ingot quality.
- **ESR used for mission critical applications**

- Combine CFD (MeltFlow) & CALPHAD (JMatPro, Thermo-Calc) methods with experiments.
- Methodology to predict segregation during ESR melting as a function of process parameter (such as slag temperature, melt rate, fill factor). Important for alloy element retention and control of tramp elements.

By applying models:
- Improved yield during ESR melting of NETL Fe-9Cr alloys (CPJ7, JMP) XMAT alloys (347).
- Achieved 41% reduction in power required to melt at constant melt rate for master alloy production.
- Reduced tramp element concentrations in ESR ingots.
- Controlled chemistry for elements in tight concentration ranges.

Contacts: Paul Jablonski (paul.jablonks@netl.doe.gov) Martin Detrois (martin.detrois@netl.doe.gov)
Current Effort

Apply models to Ni-superalloy melting & upscaling

- Emphasis on NETL developed Ni-superalloys – large range of chemistries & microstructures.
- Provides insights on processability of superalloys (pre-competitive).
- Increase the likelihood of transfer to U.S. industry

Contacts: Paul Jablonski (paul.jablonski@netl.doe.gov) Martin Detrois (martin.detrois@netl.doe.gov)
Current Effort
Gap Analysis for Feedstocks for LA-WAAM

• Establish an industrial technical committee that actively contributes feedback to gap analysis
• Develop research road map

Contact: Chantal Sudbrack (chantal.sudbrack@netl.doe.gov)
Manufacturing Compact Heat Exchangers

• sCO₂ power cycles – highly recuperated cycle
• sCO₂ power cycle conditions necessitate the use of higher temperature materials
• Demonstrate a diffusion bonding process in accordance with Appendix 42, ASME Section VIII,DIV 1 for Alloy 740H

Prior research on Alloy 230

Transient-liquid-phase (TLP) bonding using Ni-P interlayers developed for Alloy 230.

Strength of the bonded stacks was greater than 85% of base alloy 230 yield stress. Bonded stacks possessed acceptable low-cycle fatigue and creep properties. However, plastic strain localization in the bond region caused low tensile and creep elongation.

Contact: Omer Dogan (omer.dogan@netl.doe.gov)
Manufacturing Compact Heat Exchangers

Demonstrated diffusion bonding of 740H

Contact: Omer Dogan (omer.dogan@netl.doe.gov)
Manufacturing Compact Heat Exchangers

Current Effort
Demonstrate a diffusion bonding process for IN740H in accordance with Appendix 42, ASME Section VIII, DIV 1.

- Produce diffusion bonded stacks of 50 sheets
- Tensile yield stress and elongation > 75% of the bulk material.

Contact: Omer Dogan (omer.dogan@netl.doe.gov)

Acknowledge the collaboration of:

[Images and logos]
650°C Martensitic-Ferritic Steel Development

Improve the temperature capability and performance life of the relatively low-cost Fe-9–12% Cr ferritic-martensitic steel.

NETL-CPJ7 and NETL JMP Steels

★ Cast and wrought forms
★ 70kg (150 lb) ingots produced and reduced to plate (VIM, ESR)
 ▪ Formulated ESR slag chemistry
★ Welding trials/studies
 ▪ Conventional NETL
 ▪ Friction Stir Welding PNNL
★ Material available for evaluation

Contact: Jeffrey Hawk (jeffrey.hawk@netl.doe.gov)

Current Effort

✓ Low cycle fatigue (LCF), Hold-time fatigue, and Project
Materials Performance in Supercritical CO₂ Power Cycles

HIGH-TEMPERATURE OXIDATION OF STEELS AND SUPERALLOYS
Effects of impurities and pressure

- No SO₂
- 0.1% SO₂

Cr-oxide
Non-protective oxides and sulfates

LOW-TEMPERATURE CORROSION
Identifying low-cost steels resistant to acidic condensates

- H₂CO₃
- H₂CO₃ + H₂SO₄

LINKING OXIDATION BEHAVIOR AND MECHANICAL DEGRADATION

- Extensive carbide formation during CO₂ exposure

JOINING
Dissimilar metal welds investigated
- P22-P91
- P91-347H
- P22-Alloy 263
- Alloy 625-Alloy 263
- 347H-Alloy 263

Current Effort
Impact of CO₂ on:
- Creep
- Creep-fatigue

Contacts: Omer Dogan (omer.dogan@netl.doe.gov), Richard Oleksak (richard.oleksak@netl.doe.gov)

Presentation on June 15, 2021, at 1:20 PM (EDT)
Creep & Creep-Fatigue (LCF) modeling

Develop a **microstructure-based life prediction tool** that couples creep, fatigue, and environmental effects.

- Developed a crystal plasticity phase-field model that includes both shear deformation in each slip system of polycrystals and grain boundary sliding (GBS).
- Developed a phase-field model of precipitation process with continuous coherency loss.
- Developed a microstructural based oxide-scale spallation model.

Spallation due to:
- Temperature (Different thermal expansion)
- Oxide growth strain with geometric constraint
- Different creep rate between oxide and metal

Current Effort: LCF modeling

Phase field model to predict the LCF

Contact: Youhai Wen (youhai.wen@netl.doe.gov)

Presentation on June 15, 2021 at 1:40 PM (EDT)
• Tuesday, June 8, 2021, 11:10 AM (EDT): eXtremeMAT Computational Simulations Laurent Capolungo (LANL)
• Tuesday, June 15, 2021, 1:20 PM (EDT): eXtemeMAT Guidelines for Alloy Development Edgar Lara-Curzio (ORNL) & Jeffrey Hawk (NETL)

website: https://edx.netl.doe.gov/extrememat/