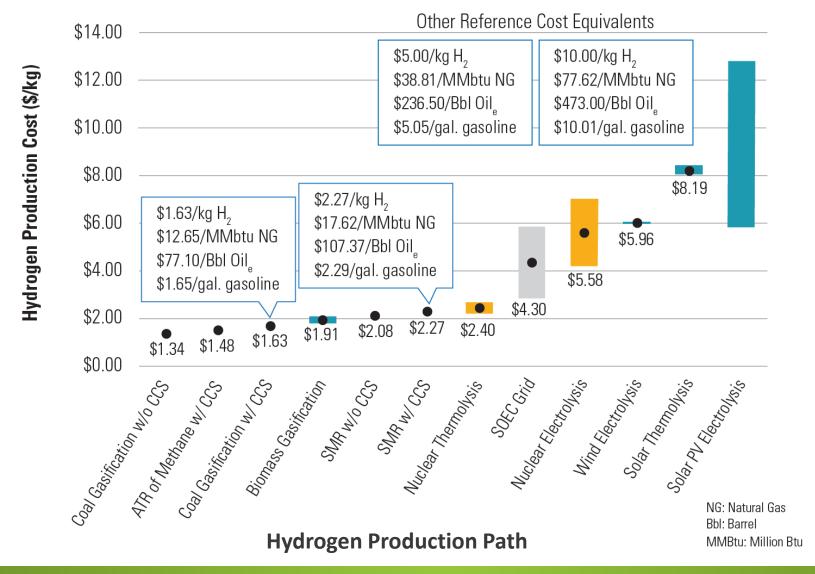

Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies

2021 Gasification Project Review Meeting

May 5, 2021

Objectives



- Develop a reference study for commercial H₂ production technologies with emphasis on coal gasification, co-gasification of coal with alternative feedstocks, and NG technologies using the levelized cost of H₂ (2018 \$/kg) as the figure of merit
- Identify areas of R&D to further improve the performance and cost of fossil fuel-based H₂ production, including follow-on analyses
- Support ongoing and future DOE FE H₂ R&D efforts by providing a contemporary understanding of the performance and costs of commercial, fossil-based H₂ production

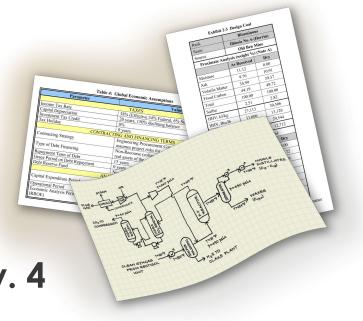
Current H₂ Production Costs by Technology

Source: "Hydrogen Strategy: Enabling a Low-Carbon Economy", Office of Fossil Energy, US Dept. of Energy, July 2020

Fossil H₂ LCOH and Emissions NG SMR and Gasification Routes

	SMR w/ CO	2 Capture	GEE-Q Gasification w/ CO ₂ Capture	
Case Description	NETL 2011	NETL Preliminary	NETL 2011	NETL Preliminary
	[1]	Update	[1]	Update
	COSTS			
Financial Structure	High Risk Fuels, 33 yrs	IOU, 33 yrs	High Risk Fuels, 35 yrs	IOU, 35 yrs
Capital Charge Factor (CCF) or Fixed Charge Rate (FCR)	26.6 (CCF)	0.07 (FCR)	32.5 (CCF)	0.07 (FCR)
Year Dollar Basis	June 2007	Dec 2018	June 2007	Dec 2018
Natural Gas Price (\$/MMBtu)	6.55	4.42	N/A	N/A
Coal Price (\$/MMBtu)	N/A	N/A	1.64	2.23
Levelized COH excluding CO ₂ TS&M, \$/kg H ₂	2.81	1.49	3.74	1.83
Fuel Cost, \$/kg H ₂	1.59	0.82	0.47	0.49
Fixed O&M Cost, \$/kg H ₂	0.15	0.14	0.30	0.27
Variable O&M Cost, \$/kg H ₂	0.28	0.26	0.42	0.33
Capital, \$/kg H ₂	0.80	0.27	2.55	0.74
Levelized COH including CO ₂ TS&M, \$/kg H ₂	2.96	1.58	4.01	2.01
CO_2 TS&M, \$/kg H ₂	0.15	0.09	0.27	0.18

Design Basis


General Evaluation Basis

• Performance and economic simulation will conform to the 2019 revision of NETL's QGESS reports:

- \circ CO $_2$ Transport and Storage
- $\circ CO_2^-$ Purity
- Cost Estimation Methodology
- Capital Cost Scaling Methodology
- Energy Balance
- Feedstock Specifications
- Fuel Prices
- Process Modeling Design Parameters
- Techno-Economic Analysis
- Aspen models will be consistent with NETL's Bituminous Baseline Report (BBR) Rev. 4

Quality Guidelines for Energy System Studies

Case Matrix

Case	Plant Type	Feedstock(s)	Reformer Type	Gasifier Type	CO ₂ Capture*	H ₂ Purification	Capacity Basis	Lifecycle Emissions Target (Ib CO ₂ e/Ib H ₂)
1	Reforming	NG	SMR		0%		Single Train SMR Max (200 MMSCFD H ₂)	N/A
2	Reforming	NG**	SIVIK		Max			N/A**
3	Reforming	NG**	ATR		Max		PSA	Match output of Cases 4 & 5 (~247 MMSCFD H ₂)
4	Gasification	Illinois No. 6				PSA	BBR Rev. 4 Case B1B Gasifier Capacity	N/A
5	Gasification	Illinois No. 6	-	Shell	Max		(~247 MMSCFD H ₂)	N/A
6	Gasification	Illinois No. 6/Torrefied Southern Yellow Pine			Max		1400 tpd gasifier feedstock (~50-100 MMSCFD H ₂)	0

*CO₂ capture targets the maximum amount of feedstock carbon captured from the syngas (ATR and gasification cases) and syngas + furnace flue gas (SMR case) **A NG/renewable natural gas (RNG) blend was originally considered for pursuit of net-zero lifecycle emission. However, recent analysis has concluded that near-term RNG production routes will not enable a net-zero plant.

"Max CO₂ Capture" Definition

- Legacy reforming and gasification models originally considered a 90% overall capture rate
- An objective for this study is to pursue "maximize CO₂ capture" in all capture cases using the following definition:
 - A 2x3 WGS reactor arrangement is incorporated in order to achieve a 97.2% CO conversion as was employed in NETL's BBR Rev. 4 Case B4B
 - SMR with CO₂ capture employs capture from both the pressurized syngas and low-pressure SMR furnace exhaust gas streams
 - ATR and gasification with CO₂ capture employs CO₂ capture from the pressurized syngas only
 - No partial bypass of AGR processes in any of the cases
 - CO₂ capture efficiencies of the AGR technologies are unchanged from NETL's BBR Rev. 4

Site Characteristics

• The following ISO ambient conditions for a generic Midwest U.S. plant location will be used in this study [1]

Parameter	Value	
Location	Greenfield, Midwestern U.S.	
Topography	Level	
Size (Gasification), acres	300	
Size (SMR/ATR), acres	100	
Transportation	Rail or Highway	
Slag Disposal	Off-Site	
Water	50% Municipal and 50% Ground Water	

Parameter	Value	
Elevation, m (ft)	0 (0)	
Barometric Pressure, MPa (psia)	0.101 (14.696)	
Average Ambient Dry Bulb Temperature, °C (°F)	15 (59)	
Average Ambient Wet Bulb Temperature, °C (°F)	10.8 (51.5)	
Design Ambient Relative Humidity, %	60	
Cooling Water Temperature, °C (°F) ^A	15.6 (60)	
Air composition based on published psychrometric data, mass %		
N ₂	75.055	
02	22.998	
Ar	1.280	
H ₂ O	0.616	
CO ₂	0.050	
Total	100.00	

^A The cooling water temperature is the cooling tower cooling water exit temperature. This is set to 4.8°C (8.5°F) above ambient wet bulb conditions in ISO cases.

Coal Characteristics

 Use of Illinois No. 6 coal with the following fuel characteristics will be assumed for the gasification cases in this study [2]

Rank	Bituminous			
Seam	Illinois No. 6			
Source	-			
Proxi	mate Analysis (weight	:%) ^A		
	As Received	Dry		
Moisture	11.12	0.00		
Ash	9.70	10.91		
Volatile Matter	34.99	39.37		
Fixed Carbon	44.19	49.72		
Total	100.00	100.00		
Sulfur	2.51	2.82		
HHV, kJ/kg (Btu/lb)	27,113 (11,666)	30,506 (13,126)		
LHV, kJ/kg (Btu/lb)	26,151 (11,252) 29,444 (12,71			
Ultimate Analysis (weight %)				
	As Received	Dry		
Moisture	11.12	0.00		
Carbon	63.75	71.72		
Hydrogen	4.50	5.06		
Nitrogen	1.25	1.41		
Chlorine	0.15	0.17		
Sulfur	2.51	2.82		
Ash	9.70	10.91		
Oxygen ^B	7.02	7.91		
Total	100.00	100.00		

^A The proximate analysis assumes sulfur as volatile matter ^B By difference

Natural Gas Characteristics

 Use of natural gas with the following fuel characteristics will be assumed for the reforming cases in this study [2]

Natural Gas				
Component		Vol	ume Percentage	
Methane	CH ₄	93.1		
Ethane	C_2H_6		3.2	
Propane	C ₃ H ₈		0.7	
<i>n</i> -Butane	C_4H_{10}		0.4	
Carbon Dioxide	CO ₂	1.0		
Nitrogen	N_2	1.6		
Methanethiol ^A	CH₄S	5.75x10 ⁻⁶		
	Total	100.0		
	Heating Value			
	LHV		HHV	
kJ/kg (Btu/lb)	47,201 (20,293)		52,295 (22,483)	
MJ/scm (Btu/scf)	34.52 (927)		38.25 (1,027)	

^AThe sulfur content of natural gas is primarily composed of added Mercaptan (methanethiol $[CH_4S]$) with trace levels of hydrogen sulfide (H_2S)

Note: Fuel composition is normalized, and heating values are calculated using Aspen

Biomass Characteristics

 Use of torrefied Southern pine biomass with the following fuel characteristics will be assumed in this study [3]

Torrefied Southern Pine Biomass				
As Received Dry				
Ultim	ate Analysis (weight	%)		
Moisture	5.72	0.00		
Carbon	59.89	63.52		
Hydrogen	5.11	5.42		
Nitrogen	0.41	0.44		
Chlorine	0.00	0.00		
Sulfur	0.00	0.00		
Ash	0.51	0.54		
Oxygen	28.36	30.08		
Total	100.00	100.00		
Heating Value				
HHV (Btu/lb)	9,749	10,340		
LHV (Btu/lb)	9,203	9,825		

Product Specifications

H₂ Product Purity

Characteristics	Concentration
Hydrogen Purity (vol%)	99.90
Max. CO ₂ (ppm)	A
Max. CO (ppm)	A
Max. H ₂ S (ppb)	10
Max. H ₂ O (ppm)	A
Max. O ₂ (ppm)	А

^AThe maximum total concentration of all oxygen containing species is 10 ppm

- The hydrogen product will meet or exceed the purity specification shown, which will result in a product suitable for several potential applications
- Contaminant levels are for ammonia grade H₂ to avoid catalyst poisoning
- Additionally, the specification will result in a product exceeding specifications for the following ISO 14687:2019 gaseous H₂ grades
 - Grade A combustion applications
 - Internal combustion engines, residential/commercial heating appliances
 - Grade B industrial power and heat applications
 - Excluding PEM fuel cells

Product Specifications

NATIONAL ENERGY TECHNOLOGY LABORATORY

H₂ Product Pressure

Commercial H₂ pipeline data received

- Pipeline system operating pressure: 800–900 psig
- Pressure at the plant fence needs to be 900+ psig

Selected a H₂ product pressure of 925 psig

• Additional H₂ product compression is needed to achieve this

Environmental Targets

Air Emissions

- The primary air emission sources for the cases are
 - SMR furnace
 - Auxiliary boiler gasification cases
- It is assumed the greenfield plants will be located in an attainment area, thus the inclusion of Best Available Control Technologies will be required per New Source Review
- The tables below include the control technologies and achievable limits assumed in the 2011 H₂ Baseline study, and are considered for this study as well [5]

Dollutout	Environmental Design Basis			
Pollutant Control Techno		Limit		
Sulfur Oxides	Zinc oxide guard bed	Negligible		
Nitrogen Oxides	Low NOx Burners	2.5 ppmv (dry) @ 15% O ₂		
Particulate Matter	N/A	Negligible		
Mercury	N/A	Negligible		

BACT Environmental Design Basis for Natural Gas Cases

Pollutant	Environmental Design Basis			
Pollutant	Control Technology	Limit		
Sulfur Oxides	AGR + Claus Plant or equivalent	99+% or ≤ 0.050 lb/10 ⁶ Btu		
Sullul Oxides	performing system	$99+\%$ 01 \leq 0.030 10/10° Btu		
Nitrogen Oxides	Low NOx Burners	15 ppmv (dry) @ 15% O_2		
Particulate Matter	Cyclone/Barrier Filter/Wet	0.015 lb/10 ⁶ Btu		
	Scrubber/AGR Absorber	0.013 lb/10 ² Blu		
Moreury	Activated Carbon Bed or	95% removal		
Mercury	equivalent performing system	55% Terrioval		

Capacity Factor

- The 2011 NETL H₂ Baseline [5] assumed a 90% capacity factor was representative of commercial SMR facilities
 - It was assumed no spare reformer was required to achieve this capacity factor
- In order to achieve an equivalent capacity factor for the gasification cases, a spare gasifier train (gasifier and raw syngas cooler) operating in hot standby was included in the design
- This study will maintain these two assumptions and will assume a spare ATR is not required to achieve 90 percent capacity factor

Key System Assumptions

Reforming Plants

NATIONAL ENERGY TECHNOLOGY LABORATORY

• The following table summarizes assumptions about the feedstock, products, and process equipment for reforming cases

Parameters	Design Basis	
Plant Size	SMR Cases: 200 MMSCFD (44,242 lb/hr)	
Plant Size	ATR Cases: ~247 MMSCFD (54,638 lb/hr)	
Hydrogen Purity	99.9 vol. %	
H ₂ Product Pressure	≥300 psig at plant gate	
CO ₂ Product Pressure	2,215 psia	
Feedstock	NG & Biomethane: Pipeline, 450 psia	
Reformer	Vertical tube steam methane reformer, externally heated	
Water Gas Shift	High-temperature, 98% conversion	
Hydrogen Purification	Pressure Swing Adsorption	
PSA Retentate Gas	Recycled to reformer as fuel	
Auxiliary Power Block	None	
Syngas CO ₂ Recovery	Coastal, proprietary MDEA, 95% removal	
Stack Gas CO ₂ Recovery	Proprietary MEA, achieve 90% total	
CO ₂ Sequestration	Off-site Saline Formation	

Key System Assumptions

Gasification Plants

NATIONAL ENERGY TECHNOLOGY LABORATORY

• The following table summarizes assumptions about the feedstock, products, and process equipment for gasification cases

Parameters	Design Basis
Plant Size	Coal-only cases: Maximum hydrogen production from 5,608 tpd coal feed
Plant Size	Co-gasification cases: Maximum hydrogen production from 1,400 tpd coal & biomass feed
H ₂ Product Pressure	≥300 psig at plant gate
CO ₂ Product Pressure	2,215 psia
Coal Feed	Illinois No. 6
Gasifier	Shell
Oxidant	95 vol% O ₂
O ₂ :Coal Ratio	0.720 kg O ₂ /kg As-Received coal
Carbon Conversion	99.5%
Gasifier Outlet Pressure	615 psia
Water Gas Shift	High-temperature, sulfur-tolerant
Auxiliary Power Block	Steam turbine generator
Hydrogen Purification	Pressure Swing Adsorption
PSA Retentate Gas	Fired in auxiliary boiler
CO ₂ Recovery	Selexol

Economic Basis

- Bottoms-up analysis
- Based on Aspen modeling:
 - Equipment lists
 - Capital costs
 - O&M costs

AACE Class 4 methodology (-15%/+30% Uncertainty)

Feedstock Costs

- Delivered coal and natural gas costs will be consistent with current NETL QGESS methodology [7]
 - Delivered Illinois No. 6 \$2.22/MMBtu
 - Delivered NG \$4.42/MMBtu
- A site-delivered cost of torrefied Southern yellow pine has been calculated using an existing cost model that considers centralized production of the design feedstock and distribution to the H₂ plant [3] and levelized to be consistent with current NETL QGESS methodology [7]

• Delivered biomass - \$5.43/MMBtu

Utility Costs

- Grid electricity will supply the full electrical demand of the reforming cases
 - A grid power price of \$71.7/MWh is assumed based on the 2019 average Midcontinent Independent System Operator Market price for industrial customers as reported in "Annual Electric Power Industry Report," Form EIA-861
- If the full electrical demand is not met by the steam turbine auxiliary power block in the gasification cases, the balance will be provided by the grid
 - Conversely, if surplus electricity is produced, it will be sold at the same grid price
- Excess steam is assumed to be exported without additional revenue

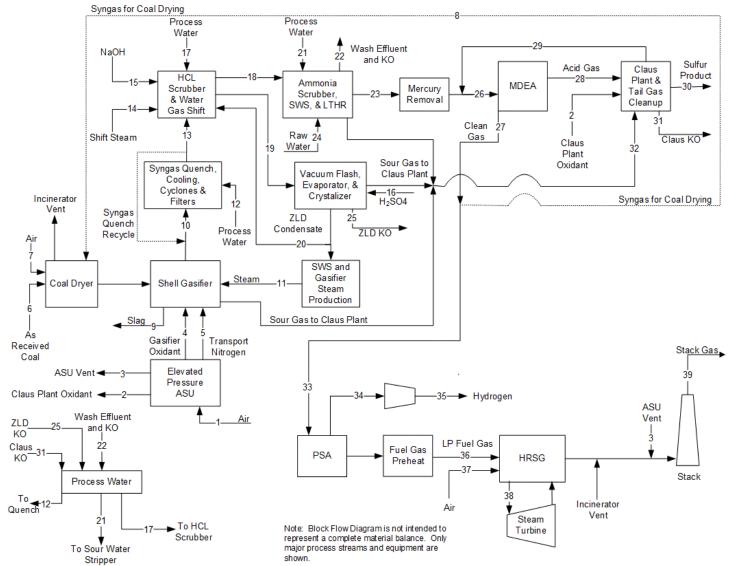
NATIONAL ENERGY TECHNOLOGY LABORATORY

Levelized Cost of Hydrogen

• The levelized cost of hydrogen will be the figure of merit for each of the six cases

- LCOH will be reported in \$/kg, expressed in real, 2018 dollars to maintain consistency with the current QGESS cost estimating methodology [8]
- Reforming cases will employ capital financing assumptions consistent with previous NETL assessment of refinery hydrogen:

 CapExp Period
 D/E
 IRROE/ Econ. Life
 Debt Rate / Term
 FCR
 TASC/ TOC


 3-yr
 38/62
 3.10%/30 yrs
 5.15%/30 yrs
 0.0586
 1.070

 Gasification cases will use similar financial assumptions with differences in construction period and TASC/TOC:

CapExp Period	D/E	IRROE/ Econ. Life	Debt Rate / Term	FCR	TASC/ TOC
5-yr	38/62	3.10%/30 yrs	5.15%/30 yrs	0.0586	1.116

BFD

Carbon/Sulfur Balance & Emissions

Carbon In		Car	Carbon Out	
	kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal		Stack Gas		
Air (CO ₂)		CO ₂ Product		
		Slag		
		H2 Product		
Total		Total		

Pollutant	kg/GJ (Ib/MMBtu)	tonne/yr (Ton/year) ^A
SO ₂		
NOx		
Particulate		
Hg		
нсі		
CO ₂		

^A Calculations based on a 90 percent capacity factor

	Sulfur In	Sulfu	Sulfur Out	
	kg/hr (lb/hr)		kg/hr (lb/hr)	
Coal		Stack Gas		
		CO ₂ Product		
		Elemental Sulfur		
Total		Total		

Energy Balance

	HHV	Sensible + Latent	Power	Total
Heat In GJ/hr (MMBtu/hr)				
Coal				
Air				
Raw Water Makeup				
Auxiliary Power				
TOTAL				
Misc. Process Steam				
Slag				
Stack Gas				
Sulfur				
Motor Losses and Design Allowances				
Hydrogen Product				
Cooling Tower Load ^A				
CO ₂ Product Stream				
Blowdown Streams				
Ambient Losses ^B				
Power				
TOTAL				
Unaccounted Energy ^C				

^A Includes condenser, AGR, and Miscellaneous cooling loads ^B Ambient losses include all losses to the environment through radiation, convection, etc. sources of these losses include the combustor, reheater,

superheater, and transformers

^c By difference

Water Balance

Water Use	Water Demand	Internal Recycle	Raw Water Withdrawal	Process Water Discharge	Raw Water Consumption
	m ³ /min (gpm)	m ³ /min (gpm)			
Slag Handling					
Slurry Water					
Gasifier Water					
Quench					
HCI Scrubber					
NH ₃ Scrubber					
Gasifier Steam					
Condenser Makeup					
BFW Makeup					
Gasifier Steam					
Shift Steam					
Cooling Tower					
BFW Blowdown					
ASU Knockout					
Total					

Performance Tables

Performance Summary	
Steam Turbine Power, MWe	
Total Gross Power, MWe	
Air Separation Unit Main Air Compressor, kWe	
Air Separation Unit Booster Compressor, kWe	
Nitrogen Compressors, kWe	
CO ₂ Compression, kWe	
Acid Gas Removal, kWe	
Balance of Plant, kWe	
Total Auxiliaries, MWe	
Net Power, MWe	
Hydrogen Production, kg/hr (lb/hr)	
CO ₂ Capture, %	
HHV Effective Thermal Efficiency (%) ^A	
HHV Cold Gas Efficiency, % ^B	
LHV Effective Thermal Efficiency (%) ^A	
LHV Cold Gas Efficiency, % ^B	
Steam Turbine Cycle Efficiency, %	
Steam Turbine Heat Rate, kJ/kWh (Btu/kWh)	
Condenser Duty, GJ/hr (10 ⁶ Btu/hr)	
AGR Cooling Duty, GJ/hr (10 ⁶ Btu/hr)	
As-Received Coal Feed, kg/hr (lb/hr)	
HHV Thermal Input, kWt	
LHV Thermal Input, kWt	
Raw Water Withdrawal, m³/min (gpm)	
Raw Water Consumption, m³/min (gpm)	
O ₂ :Coal	

Power Summary

Steam Turbine Power, MWe
Total Gross Power, kWe

Acid Gas Removal. kWe Air Blower, kWe Air Separation Unit Auxiliaries, kWe Air Separation Unit Main Air Compressor, kWe Air Separation Unit Booster Compressor, kWe Ammonia Wash Pumps, kWe Circulating Water Pumps, kWe Claus Plant TG Recycle Compressor, kWe Claus Plant/TGTU Auxiliaries, kWe CO₂ Compression, kWe Coal Dryer Air Compressor, kWe Coal Handling, kWe Coal Milling, kWe Condensate Pumps, kWe Cooling Tower Fans, kWe Feedwater Pumps, kWe Gasifier Water Pump, kWe Ground Water Pumps, kWe Hydrogen Compressor, kWe Miscellaneous Balance of Plant^A, kWe Nitrogen Compressors, kWe Oxygen Pump, kWe Quench Water Pump, kWe Shift Steam Pump, kWe Slag Handling, kWe Slag Reclaim Water Recycle Pump, kWe Slurry Water Pump, kWe Sour Gas Compressors, kWe Sour Water Recycle Pumps, kWe Steam Turbine Auxiliaries, kWe Syngas Recycle Compressor, kWe Syngas Scrubber Pumps, kWe Process Water Treatment Auxiliaries, kWe Transformer Losses, kWe Total Auxiliaries. MWe Net Power, MWe

^A Includes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

A ETE = (Hydrogen Heating Value + Net Power) / Fuel Heating Value

^BCGE = Hydrogen Heating Value / Fuel Heating Value

Schedule

Deliverable	Date
Design Basis	Complete
Simulation & Performance Assessment	Complete
Cost Analyses	Presently ongoing
Internal Draft Report	June 2021
Peer Review	July 2021
Public Final Report	August 2021

References

[1] NETL, "QGESS: Process Modeling Design Parameters," Pittsburgh, PA, 2019.

[2] NETL, "QGESS: Specification for Selected Feedstocks," Pittsburgh, PA, 2019.

[3] NETL, "Comprehensive Analysis of Coal and Biomass Conversion to Jet Fuel: Oxygen Blown, Transport Reactor Integrated Gasifier (TRIG) and Fischer-Tropsch (F-T) Catalyst Configurations," Pittsburgh, PA, 2014.

[4] CCST, "Biomethane in California Common Carrier Pipelines: Assessing Heating Value and Maximum Siloxane Specifications," June 2018

[5] NETL, "Assessment of Hydrogen Production with CO₂ Capture Volume 1: Baseline State-of-the-Art Plants," November, 2011

[6] NREL, <u>H2A: Hydrogen Analysis Production Models</u>

[7] NETL, "Fuel Prices for Selected Feedstocks in NETL Studies," Pittsburgh, PA, 2019.

[8] NETL, "QGESS: Cost Estimation Methodology for NETL Assessments of Power Plant Performance: Revision 4 Report," Pittsburgh, PA, 2019.

[9] NETL, "Natural Gas-Based Coproduction of Power and Hydrogen with CCS – Draft," July 2020

[10] NETL, "Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity," September 2019

Legal

Acknowledgment: This material is based upon work supported by the Department of Energy research under the Advanced Reaction Systems Field Work Proposal (FWP)

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof." agency thereof."

Questions/Comments?

Robert Stevens, Ph.D. Robert.Stevens@netil.doe.gov (304) 285-4305

