
High Selectivity and Throughput Carbon Molecular Sieve Hollow 
Fiber Membrane-Based Modular Air Separation Unit for 

Producing High Purity O2

FE-1049-18-FY19

Rajinder P. Singh
Materials Physics and Applications Division

Los Alamos National Laboratory

2021 Gasification Project Review Meeting
DOE – Fossil Energy/NETL

May 4th, 2021  



Project Overview
 Award Name: High Selectivity and Throughput Carbon 

Molecular Sieve Hollow Fiber Membrane-Based 
Modular Air Separation Unit for Producing High 
Purity O2

 Award Number: FE-1049-18-FY19
 Current Project Period: BP3: 12/2020 – 11/2021
 Project Manager: Venkat K. Venkataraman
 Overall Program Goal: Development of high flux polybenzimidazole–

derived carbon molecular sieve hollow fiber 
membranes having O2/N2 selectivity >15 for high 
purity O2 production to meet the needs of a 
modular 1-5 MWe gasification system
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DOE Advanced Energy Systems Program
 Gasification systems program
 Coal-based power generation with 

near-zero emissions
 Reduce the cost and increase efficiency 

exploiting Radically Engineered Modular 
Systems (REMS) concepts for gasification 
system

 Leverage mass production and learning 
curve in lieu of traditional scale-up

 Advanced technology need: 
 Energy efficient air separation technology 

for high purity O2 production
 Program Targets:
 90-95 vol% purity O2
 Low cost and operational efficiency relative 

to the state-of-the-art technology
Images: DOE/NETL website



Air Separations
 Cryogenic distillation is the industrially preferred technique for large-scale, 

high purity O2 production
 State of the art cryogenic technology is energy inefficient at small scale 
 Scale dependent estimated specific energy consumption 23 to 63 KJ/mol

 Membrane-based air separation processes have advantages over competing 
technologies 

Ref: Meriläinen et al. / Applied Energy, 94 (2012) 285-294

 Tailorable output stream conditions 
(T&P) to match downstream process

 Improved energy economics

Ref: Air Products Inc. & Air Liquide Inc.

 Inherent modularity & dramatically 
reduced footprint

O2/N2
Selectivity



Achieving High O2 Purity With Membranes
 A multi-stage membrane process is necessary to achieve high purity O2 with 

realistically achievable membranes
 O2 enriched permeate from 1st membrane stage is further purified using additional 

membrane stages to achieve target O2 purity of 90-95%
 A 2-stage design enables high O2 purity, but advantages of additional staging and 

alternative flow configurations are also be explored 
 Inter-stage compression required for driving force

Multi-stage Membrane Separation 
Process to Achieve High Purity

Calculated O2 Purity. Ref: Ward et.al., J Membrane Sci 1 (1976) 99-108



O2 Selective Membrane Materials
 Membrane materials: current state-of-the-art
 O2/N2 selectivities approaching 30 for polymer-derived carbon molecular sieve (CMS) 

membranes achieved

References
PBI-CMS: S.S. Hosseini et al., Separation and Purification 
Technology 122 (2014) 278–289
PI-CMS: A. Singh-Ghosal, W.J. Koros, J., Membrane Science 
174 (2000) 177–188
Liquids: Preethi et.al., Reactive and Functional Polymers, 66 
(2006) 851-855
Polymers & Robeson Lines: L.M. Robeson, The upper bound 
revisited, J. Membr. Sci., 320 (2008) 390-400
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Membrane Development Approach
 Polybenzimidazole (PBI)-derived carbon molecular sieve membranes for high 

O2 /N2 selectivity
 Tightly packed PBI molecular structure 

resulting from H-bonding and π-π stacking 
imparts molecular sieving character

 Base polymer (m-PBI) has high selectivity 
for gas pairs (e.g. H2/N2 ≥ 100; O2/N2 =2) 

 Further enhancement of molecular 
sieving properties via controlled pyrolysis 
proposed to create ultra-micropores

 PBI pyrolysis preliminary work: O2/N2
selectivity increased from 2 to 30
[Ref: S.S. Hosseini et al. / Separation and Purification 
Technology 122 (2014) 278–289]

Ref: Rungata et.al., Carbon
115 (2017) 237-248

N NHN NH

N

N
H

N

N
H

N

NN

N

H

H
n



Project Objectives
A membrane-based, modular air separation technology for high 

purity O2 production
 Develop CMS materials derived from PBI materials (PBI-CMS) to achieve the 

desired material transport characteristics 

 Develop PBI-CMS hollow fiber membranes having the desired membrane 
performance characteristics 

 Conduct process design and analysis and techno-economic analysis based on 
PBI-CMS hollow fiber membranes for air separation and benchmark against the 
industry standard cryogenic technology

 Design a modular ASU with integrated peripheral equipment (e.g., blower, 
vacuum pump, compressor) for high purity O2 production scaled to meet the 
needs of a 1-5 MWe gasification system



Project Timeline (BP – 3)



Project Milestones & Success Criteria Point (BP – 3)
FY ID Task # Description Planned 

Completion Date Status Verification 
Method

3 M9 2.0 Set-up a flowing gas pyrolysis system for PBI 
membrane pyrolysis. 09/30/21 Finished 

set-up

Membrane 
performance 

data

3 M10 2.0
Develop O2 permeance and O2/N2 selectivity 

correlations as a function of selective layer thickness 
and fabrication process parameters.

11/30/21 In progress
Membrane 

performance 
data

3 M11 3.0 Performance evaluation of PBI-CMS HFMs in realistic 
air feed mixtures containing CO2, H2O and Ar 11/30/21 In progress

Membrane 
performance 

data

3 M12 4.0
Complete the preliminary techno-economic analysis 

of the 2-stage membrane process and report on the O2
production cost ($/ton)

09/30/21 In process Report file

No Decision point Success Criteria Date Outcome

4

Go/No-Go for
the optimized

PBI-CMS hollow 
fiber membranes

Determine the feasibility of achieving PBI-CMS 
hollow fiber membranes with high O2 permeance

(100 GPU) while maintaining O2/N2 selectivity of 15 
as demonstrated by the membrane fabrication 
parameter-structure-performance correlations.

11/30/21
In progress; Demonstrated

O2 permeance ~72 GPU and 
O2/N2 selectivity ~11



Membrane Material & Hollow Fiber 
Development



 CMS membrane formation is multi-step process 

 Numerous membrane formation parameters influence the separation 
performance of the polymer derived CMS membranes

Polymer Derived CMS Membranes

PBI Polymer Base Polymer
Membrane

CMS 
MembranesThin-Film

Hollow Fibers
Pyrolysis 

Polymer 
Characteristics

 Molecular weight
 Main chain modifications

 Side chain
functionalization
 Crosslinking

Membrane 
Morphology

 Selective layer 
thickness

 Porous support 
morphology

Pyrolysis 
Protocol

 Pre-treatment
 Temperature
 Time

 Ramp-rate
 Atmosphere
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Base Hollow Fiber Membrane Preparation
 Base PBI HFMs having asymmetric morphology are fabricated utilizing lab-scale 

liquid-liquid demixing based fiber spinning capability 

Ref. Berchtold & Singh, et.al. 2018 US Patent 10071345 



PBI Membrane Pyrolysis 
 Pyrolysis conditions have a tremendous influence on the gas separation 

performance of the polymer derived CMS membranes
 Efforts focused on the development and optimization of PBI pyrolysis protocols 

Pyrolysis Parameters
 Temperature (500 to 900 °C)
 Ramp rate and dwell time
 Environment (e.g. inert, vacuum)

Successfully fabricated mechanically robust 
PBI-CMS membranes in industrially 

attractive platform 



Achieving High Permeance
 Challenge: Mitigate HFM porous support structure collapse during pyrolysis

 Achieving high permeance
requires asymmetric 
morphology: Thin selective 
layer supported with a 
porous layer 
 Estimated 1 µm thick selective 

layer of 2nd Generation (Gen) 
fibers should enable achieve-
ment of project permeance
target of 100 GPU 
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Improving Separation Performance
Symmetric 

PBI-CMS HFM

Material chemistry & 
processing optimization

Integrally asymmetric 
and dimensionally
stable PBI-CMS HFM

20 μm

20 μm



Controlled Morphology and Selective Layer Thickness
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 Modified PBI-HFM 
fabrication protocol 
leads to 
 smaller pyrolysis 

induced dimensional 
change in HFMs

 better selective layer 
thickness control

 higher O2 permeance

A1 A2 A3 A4 A50, (Control)

Selective layer
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Influence of Feed Pressure on Perm-Selectivity
 Steady performance as a function of pressure
 Modified fabrication process led to ca. 40-fold improvement in O2 permeance

with comparable selectivity
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Influence of Temperature on Perm-Selectivity
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 Overall O2 and N2 permeances follow Arrhenius expression
 Gen2: O2 permeance and O2/N2 ranged from of 66 to 87 GPU and 11 to 5.6, resp.

Gen2

Gen1



Membrane Modeling and Process Design



Proposed Process Layout
 2-stage PBI-CMD HFMs-based air separation process for > 90% O2 production



Process Modeling Platform Development
 Improved HFM process model and expanded capability to calculate process 

energy consumption

Hollow Fiber 
Membrane Module

 Membrane module optimization to 
minimize parasitic energy losses



Process Energy Consumption Optimization
 Rigorous analysis of process parameters and membrane module design to 

minimize process energy consumption 



Energy Consumption
 Revised specific energy consumption calculation 
 40 to 45 kJ/mol O2 for 90 to 95% purity O2 achievable with demonstrated PBI-CMS 

HFMs having O2/N2 selectivity of 10 to 20



Techno-economic Analysis – Design Basis Developed
Process parameters Input values
O2 Production Rate, TPD 10
Number of Membrane Stages 2
Inlet volume of air, Kg/s 1-3
Pressure of inlet air, bar 1.01 to 1.20
Temperature Stage-1 and stage-2, ⸰C 25 & 5
Hours of operation per year 7884
Pressure ratio 10
Membrane effective thickness, µm 0.3 to 1
O2 purity (%) at Stage-1 and Stage-2 60-65, 90-95
Pump efficiency, % and temperature, ⸰C 40-64, 15
Membrane installation factor 0.35-0.45
Electricity cost, $/MWh 50 - 60

Membrane module Input values
HF Diameter, µm 300-500
Wall Thickness, µm 30
Selective Layer Thickness, µm 0.1 to 1.0
O2 permeance, GPU 50-300
O2/N2 selectivity of the membrane 10-30
Module Diameter, m 0.25
Module Length, m 1-3
Surface Area Density, m2/m3 3000
Area Ratio Stage 1/Stage 2 ~ 5/1
Membrane cost, $/m2 30-100 Energy Consumption, KJ/mol 33-55

Production Cost, $/tonne O2 30-80

Preliminary Estimates (Best Case Scenarios)



Performance Benchmarking



Performance Benchmarking
 Evaluation of PBI-CMS HFMs in air feed stream
 Influence of water vapor and CO2 on the membrane separation performance 

 Lab-scale membrane module
 O2 permeance and selectivity 

data collection at process 
relevant operating conditions 
 Feed Pressure: 1-3 bar
 Temperature: 10 to 100 °C
 RH: 5 to 90%

 Real-time detection of H2O 
and CO2

 Benchmark performance data 
for model validation

 Initiated system and analytical 
equipment calibration 



Air Separation Performance Evaluation 
 Mixed gas permeation system schematic for evaluation of PBI-CMS HFMs at 

process relevant operating conditions

Air

Air

Feed

Permeate Retentate

Sweep

Pressure Control 
Valve

Condenser

Temperature Control 
10 to 65 °C

GC Analysis

Other

FTIR 
Analytics

Typical Air Composition

N2 78% (vol. Dry Basis)

O2 21%

Ar 0 to 0.93

CO2 0 to 400 ppm

Relative
Humidity 10 to 90%

Addendum



Multi-Fiber Membrane Module
 Laboratory scale PBI-CMS multi-fiber membrane module for air separation 

performance evaluations at process relevant conditions

Addendum

5 PBI-CMS HFMs

Multi-fiber cartridge

Membrane module shell with flow-
through on feed and permeate sides



Future Work
Membrane Design and Fabrication
 Compare performance of the PBI-CMS HFMs fabricated under flowing inert gas 

(N2) and vacuum.

 Develop O2 permeance and O2/N2 selectivity correlations as a function of the 
selective layer thickness and fabrication process parameters. 

Membrane Evaluation and Performance Benchmarking
 Performance evaluation of PBI-CMS HFMs in realistic air feed mixtures 

containing CO2, H2O and Ar

Techno-economic Analysis
 Complete the preliminary techno-economic analysis of the 2-stage membrane 

process and report on the O2 production cost ($/ton)



Summary
The outcome of this work will be a next generation membrane platform with 

processability and scalability characteristics amenable to industrial deployment 
at a modular scale while enabling low-cost and energy efficient high purity O2

production for advanced gasification power systems   

Material Design & Synthesis

Lab-scale Demonstration 
& Evaluation

Process 
Modeling

Processing & 
Membrane Synthesis

CMS Membranes
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