

High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O₂

FE-1049-18-FY19

Rajinder P. Singh Materials Physics and Applications Division Los Alamos National Laboratory

2021 Gasification Project Review Meeting DOE – Fossil Energy/NETL May 4th, 2021

Project Overview

Section 4 Award Name:

- **Award Number:**
- **Solution** Series Serie
- Project Manager:
- **Solution** Solution S

High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O_2 FE-1049-18-FY19 BP3: 12/2020 – 11/2021 Venkat K. Venkataraman Development of high flux polybenzimidazolederived carbon molecular sieve hollow fiber membranes having O_2/N_2 selectivity >15 for high purity O₂ production to meet the needs of a modular 1-5 MWe gasification system

Project Tasks & Team Members

Solution Membrane Design, Fabrication and Evaluation

- JongGeun Seong
- Harshul V. Thakkar
- > Jeremy C. Lewis
- Erica P. Craddock

- John A. Matteson
- Kathryn A. Berchtold
- Rajinder P. Singh

Solution Process Modeling and Simulations

- Kamron G. Brinkerhoff
- Brendan J. Gifford
- Alexander J. Josephson

Solution System Design

Fodd A. Jankowski

Christopher S. Russell

> Troy M. Holland

Materials Physics & Applications Division

Theoretical Division

Earth & Environmental Science Division

Engineering Division

DOE Advanced Energy Systems Program

& Gasification systems program

- Coal-based power generation with near-zero emissions
- Reduce the cost and increase efficiency exploiting Radically Engineered Modular Systems (REMS) concepts for gasification system
- Leverage mass production and learning curve in lieu of traditional scale-up

Los Alamos

Gasifier

Solids

Marketable Solid By-Products

articula

Sulfur/

Sulfuric Acid

Coal

Biomass

Petroleum Coke/Resid

Waste

 Energy efficient air separation technology for high purity O₂ production

Gas Stream Cleanup/Component Separation

Syngos

Exhaust

Generato

Fuel Cell

Exhaust

Heat Recovery Steam Generator

Combustion Turbine Combined

Transportation Fu

Electric Powe

Electric Powe

Electric Powe

CO₂ for Sequestration

> Program Targets:

Feedstock

- 90-95 vol% purity O₂
- Low cost and operational efficiency relative to the state-of-the-art technology

Images: DOE/NETL website

Air Separations

- Scryogenic distillation is *the* industrially preferred technique for large-scale, high purity O₂ production
 - > State of the art cryogenic technology is energy inefficient at small scale
 - Scale dependent estimated specific energy consumption 23 to 63 KJ/mol
- Solution Membrane-based air separation processes have advantages over competing Tailorable output stream conditions technologies
 - > Inherent modularity & dramatically reduced footprint

- (T&P) to match downstream process
- Improved energy economics

Ref: Air Products Inc. & Air Liquide Inc.

Ref: Meriläinen et al. / Applied Energy, 94 (2012) 285-294

Achieving High O₂ Purity With Membranes

- ♦ A multi-stage membrane process is necessary to achieve high purity O₂ with realistically achievable membranes
 - O₂ enriched permeate from 1st membrane stage is further purified using additional membrane stages to achieve target O₂ purity of 90-95%
 - A 2-stage design enables high O₂ purity, but advantages of additional staging and alternative flow configurations are also be explored
 - Inter-stage compression required for driving force

Multi-stage Membrane Separation Process to Achieve High Purity

Los Alamos

O₂ Selective Membrane Materials

Solution Membrane materials: current state-of-the-art

O₂/N₂ selectivities approaching 30 for polymer-derived carbon molecular sieve (CMS) membranes achieved

Membrane Development Approach

- Solution Set to the set of the s
 - Tightly packed PBI molecular structure resulting from H-bonding and π-π stacking imparts molecular sieving character
 - Base polymer (*m*-PBI) has high selectivity for gas pairs (e.g. $H_2/N_2 \ge 100$; $O_2/N_2 = 2$)
 - Further enhancement of molecular sieving properties via controlled pyrolysis proposed to create ultra-micropores
 - PBI pyrolysis preliminary work: O₂/N₂ selectivity increased from 2 to 30 [Ref: S.S. Hosseini et al. / Separation and Purification Technology 122 (2014) 278-289]

Project Objectives

✤ A membrane-based, modular air separation technology for high purity O₂ production

- Develop CMS materials derived from PBI materials (PBI-CMS) to achieve the desired material transport characteristics
- Develop PBI-CMS hollow fiber membranes having the desired membrane performance characteristics
- Conduct process design and analysis and techno-economic analysis based on PBI-CMS hollow fiber membranes for air separation and benchmark against the industry standard cryogenic technology
- Design a modular ASU with integrated peripheral equipment (e.g., blower, vacuum pump, compressor) for high purity O₂ production scaled to meet the needs of a 1-5 MWe gasification system

Project Timeline (BP – 3)

				В	P1			B	P2			BI	P3			B	P4			BI	25	
				12/1 11/3	5/18 30/19	-	1	12/01 11/3	1/19 0/20	-	1	11/3	l/20 - 0/21	-	1	11/3	1/21 0/22	-	1	2/01 11/3	./22 0/23	-
	Start Date	End Date	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1.0 - Project Management & Planning	12/15/18	09/30/23																				
Task 2.0 - PBI- CMS Hollow Fiber Membrane Preparation, Optimization, and Characterization	12/15/18	09/30/22												4								
Subtask 2.1 - Optimize PBI pyrolysis conditions	12/15/18	03/30/20												•								
Subtask 2.2 - CMS hollow fiber membrane preparation	06/01/18	09/30/22												1	0							
Task 3.0 - Membrane Evaluation and Process Parametric Studies	04/01/19	09/30/23												4	1							
Task 4.0 - Process Design and Techno-economic Analysis	12/15/18	09/30/22											1	2								
Task 5.0 - Modular System Design	10/01/22	09/30/23																				

Project Milestones & Success Criteria Point (BP – 3)

FY	ID Task # Description		Planned Completion Date	Status	Verification Method	
3	3 M9 2.0		Set-up a flowing gas pyrolysis system for PBI membrane pyrolysis.	09/30/21	Finished set-up	Membrane performance data
3	3 M10 2.0		Develop O_2 permeance and O_2/N_2 selectivity correlations as a function of selective layer thickness and fabrication process parameters.	11/30/21	In progress	Membrane performance data
3	3 M11 3.0 Performance e air feed mi		Performance evaluation of PBI-CMS HFMs in realistic air feed mixtures containing CO ₂ , H ₂ O and Ar	11/30/21	In progress	Membrane performance data
3	3 M12 4.0		Complete the preliminary techno-economic analysis of the 2-stage membrane process and report on the O ₂ production cost (\$/ton)	09/30/21	In process	Report file
No	Decision point		Success Criteria	Date	Outco	ome
4	4 Go/No-Go for the optimized PBI-CMS hollow fiber membranes		Go/No-Go for the optimized BI-CMS hollow ber membranes CMCCOD CHICHARDetermine the feasibility of achieving PBI-CMShollow fiber membranes with high O2 permeance(100 GPU) while maintaining O2/N2 selectivity of 15as demonstrated by the membrane fabricationparameter-structure-performance correlations.		In progress; D O ₂ permeance O ₂ /N ₂ selec	emonstrated ~72 GPU and tivity ~11

Membrane Material & Hollow Fiber Development

Polymer Derived CMS Membranes

Solution Solution S

Sumerous membrane formation parameters influence the separation performance of the polymer derived CMS membranes

	<u>Polymer</u>
Characteristics	Characteristics

 Molecular weight
 Main chain modifications
 Side chain functionalization
 Crosslinking

Membrane Morphology

- Selective layer thickness
- Porous support morphology

<u>Pyrolysis</u> <u>Protocol</u>

- Pre-treatment
- Temperature
 - Time
 - ➢ Ramp-rate
- Atmosphere

Base Hollow Fiber Membrane Preparation

Base PBI HFMs having asymmetric morphology are fabricated utilizing lab-scale liquid-liquid demixing based fiber spinning capability

Ref. Berchtold & Singh, et.al. 2018 US Patent 10071345

NNS

PBI Membrane Pyrolysis

- Section Sec
 - > Efforts focused on the development and optimization of PBI pyrolysis protocols

Pyrolysis Parameters

- Temperature (500 to 900 °C)
- Ramp rate and dwell time
- Environment (e.g. inert, vacuum)

Successfully fabricated mechanically robust PBI-CMS membranes in industrially attractive platform

Achieving High Permeance

Solution Structure Collapse during pyrolysis

- Achieving high permeance requires asymmetric morphology: Thin selective layer supported with a porous layer
 - Estimated 1 µm thick selective layer of 2nd Generation (Gen) fibers should enable achievement of project permeance target of 100 GPU

Improving Separation Performance

Controlled Morphology and Selective Layer Thickness

- Modified PBI-HFM
 fabrication protocol
 leads to
 - smaller pyrolysis induced dimensional change in HFMs
 - better selective layer thickness control
 - > higher O_2 permeance

Influence of Feed Pressure on Perm-Selectivity

- **Steady performance as a function of pressure**
- ✤ Modified fabrication process led to ca. 40-fold improvement in O₂ permeance with comparable selectivity

INS

Influence of Temperature on Perm-Selectivity

Solution \mathbb{Q}_2 overall O_2 and N_2 permeances follow Arrhenius expression Solution \mathbb{Q}_2 Gen2: O_2 permeance and O_2/N_2 ranged from of 66 to 87 GPU and 11 to 5.6, resp.

Membrane Modeling and Process Design

Proposed Process Layout

♦ 2-stage PBI-CMD HFMs-based air separation process for > 90% O₂ production

Process Modeling Platform Development

Improved HFM process model and expanded capability to calculate process energy consumption

• Membrane module optimization to minimize parasitic energy losses

Process Energy Consumption Optimization

Section 3 Sec

Energy Consumption

Solution Servised specific energy consumption calculation

40 to 45 kJ/mol O₂ for 90 to 95% purity O₂ achievable with demonstrated PBI-CMS HFMs having O₂/N₂ selectivity of 10 to 20

Techno-economic Analysis – Design Basis Developed

Membrane module	Input values				
HF Diameter, μm	300-500				
Wall Thickness, µm	30				
Selective Layer Thickness, µm	0.1 to 1.0				
O ₂ permeance, GPU	50-300				
O_2/N_2 selectivity of the membrane	10-30				
Module Diameter, m	0.25				
Module Length, m	1-3				
Surface Area Density, m ² /m ³	3000				
Area Ratio Stage 1/Stage 2	~ 5/1				
Membrane cost, \$/m ²	30-100				

Process parameters	Input values				
O ₂ Production Rate, TPD	10				
Number of Membrane Stages	2				
Inlet volume of air, Kg/s	1-3				
Pressure of inlet air, bar	1.01 to 1.20				
Temperature Stage-1 and stage-2, °C	25 & 5				
Hours of operation per year	7884				
Pressure ratio	10				
Membrane effective thickness, µm	0.3 to 1				
O ₂ purity (%) at Stage-1 and Stage-2	60-65, 90-95				
Pump efficiency, % and temperature, °C	40-64, 15				
Membrane installation factor	0.35-0.45				
Electricity cost, \$/MWh	50 - 60				

Preliminary Estimates (Best Case Scenarios)

Energy Consumption, KJ/mol	33-55
Production Cost, \$/tonne O ₂	30-80

Performance Benchmarking

Performance Benchmarking

Solution of PBI-CMS HFMs in air feed stream

> Influence of water vapor and CO₂ on the membrane separation performance

- Lab-scale membrane module
- O₂ permeance and selectivity data collection at process relevant operating conditions
 - ✤ Feed Pressure: 1-3 bar
 - ✤ Temperature: 10 to 100 °C
 - ✤ RH: 5 to 90%
- Real-time detection of H₂O and CO₂
- Benchmark performance data for model validation
- Initiated system and analytical equipment calibration

Air Separation Performance Evaluation

Mixed gas permeation system schematic for evaluation of PBI-CMS HFMs at process relevant operating conditions

Typical Air Composition						
N ₂	78% (vol. Dry Basis)					
0 ₂	21%					
Ar	0 to 0.93					
CO ₂	0 to 400 ppm					
Relative Humidity	10 to 90%					

Addendum

Multi-Fiber Membrane Module

Membrane module shell with flowthrough on feed and permeate sides

Addendum

Future Work

Solution Membrane Design and Fabrication

- Compare performance of the PBI-CMS HFMs fabricated under flowing inert gas (N₂) and vacuum.
- Develop O₂ permeance and O₂/N₂ selectivity correlations as a function of the selective layer thickness and fabrication process parameters.

Membrane Evaluation and Performance Benchmarking

Performance evaluation of PBI-CMS HFMs in realistic air feed mixtures containing CO₂, H₂O and Ar

Solution States State

Complete the preliminary techno-economic analysis of the 2-stage membrane process and report on the O₂ production cost (\$/ton)

Summary

The outcome of this work will be a next generation membrane platform with processability and scalability characteristics amenable to industrial deployment at a modular scale while enabling low-cost and energy efficient high purity O_2 production for advanced gasification power systems

MS

Acknowledgements

b DOE – NETL Gasification Program

- > Evelyn Lopez
- Venkat Venkataraman
- David Lyons
- **b** Los Alamos National Laboratory
 - > MPA, T, EES and E Divisions

Disclaimer

The submitted materials have been authored by an employee or employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government purposes. This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither Triad National Security, LLC, the U.S. Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Triad National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of Triad National Security, LLC, the U.S. Government, or any agency thereof.

