Modular Gasification for Syngas/Engine
Combine Heat & Power Applications in Challenging Environments
This material is based upon work supported by the Department of Energy Award Number DE-FE0031601

MAKING COAL RELEVANT FOR SMALL SCALE APPLICATIONS

UAF is an AA/EO employer and educational institution and prohibits illegal discrimination against any individual: www.alaska.edu/nondiscrimination/.
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
WHERE IS FAIRBANKS?
PROJECT PARTNERS

HMI: Intellectual Property
Decades Experience

Worley Group Inc.: Detailed Engineering
Cost Estimating Service

Chena Power & Western Energy Services:
Integration of Greenhouses with Engine
Generators

Cost Share: Chena Power, Aurora Energy,
City of North Pole, Sotacarbo, HMI, Hobbs
Industries, Western Energy Services
Demonstrate small scale coal gasification to fuel reciprocating engine generators

- Cost effective coal generating capacity for small applications
- Provides load following services
- Ideal for islanding systems
- Local jobs and local food
ALIGNMENT WITH DOE GOALS

✓ Small—50-350 MW
 ✓ This project: 18 MWe
 ✓ First step toward “modularizing”

✓ Near Zero Emissions
 ✓ Built in a “Serious non-Attainment area for PM2.5”
 ✓ Purification of exhaust gas and supplied to greenhouses for CO2 enrichment

✓ Minimize water usage
 ✓ Water cleaned up for greenhouse use

✓ Capable of natural gas co-firing
 ✓ Engines are easily convertible to firing natural gas or propane

✓ Capable of high ramp rates
 ✓ Designed for wind regulation

Not specifically part of DOE’s stated goals, but noteworthy:

✓ Pyrolysis tars/oils can be used in diesel engines

✓ Designed to co-fire biomass
Coal/Biomass Input → Fuel Preparation / Feed Handling → Air Blower → Gasifier & Cyclone → Gas Cooling → Wet Electrostatic Precipitator → Acid Gas Removal → Jenbacher Engine Generator JMS620 X 4 → Diesel Engine Generator → Power Out

Gasification System with pre-combustion sulfur capture

Heat Recovery → To Greenhouse

Power Block

→ 7.8 MWe
→ 3.0 MWe oils/tars
→ 6.4 MWe naphtha
THE EQUIPMENT
FOUND A HOME!
WHY COAL GASIFICATION?

<table>
<thead>
<tr>
<th></th>
<th>Syngas Project (City of North Pole)</th>
<th>Diesel (GVEA)</th>
<th>Naphtha (GVEA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost</td>
<td>$94.3 million</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fuel Costs + variable O&M</td>
<td>$10/MMBtu (at engine intake)</td>
<td>$17/MMBtu</td>
<td>$14/MMBtu</td>
</tr>
<tr>
<td>Levelized Cost of Electricity</td>
<td>$154/MWh</td>
<td>$269/MWh</td>
<td>$214/MWh</td>
</tr>
</tbody>
</table>
| **Total Generation Capacity** | 18 MW
10.0 MW avg
5 - 18 MW swing | 180 MW
10 MW avg
5 - 60 MW swing | 60 MW
43 MW avg
35 - 50 MW swing |
| **Electric Efficiency, LHV Eff. with heat recovery** | 34%
53%-69% | <15%
(old, simple cycle turbines, part load) | 42%
(combined cycle turbine, used for wind regulation) |
Efficiency vs. Load

Combined Cycle LM6000 Gas Turbine Plant – NPEP Efficiency Curve – Compared to Diesel Recip Units in Wind Load Following Application

Fuel 100%

Efficiency %

10 MW 20 MW 30 MW 40 MW 50 MW 60 MW

9 MW 18 MW 27 MW

Generator Output MW

Fuel %

0% 10% 20% 30% 40% 50%

STARTING

Jet A Fuel Below 17 MW

Lower Cost Naphtha Fuel 17 MW and up >>>

Steam Turbine Risks Tripping Below ~20 MW

Peak Efficiency 52% @ -30F ~68 MW, 72 GPM

50% Eff, 85.8 gallons per MWh

Reduction in Gas Turbine Efficiency to Load Follow Wind ~ 16%

34% EH, 128.4 gallons per MWh

Higher loads cannot be achieved at high ambient temps (summer time)

24.6 MW Reduction in Output as Wind Output Increases
The EPA designated the Fairbanks vicinity as a “serious nonattainment area for PM2.5”

- PM2.5 and precursors (NOx, SO2, volatile organic compounds, and ammonia) will be regulated under the nonattainment New Source Performance Standard
- Even with Best Available Control Technology, this project is economical
GVEA CO$_2$e EMISSION RATES

GVEA Goal: Reduce CO2e emissions rate 26% by 2030 from 2012 levels with no adverse long-term increase in rates or adverse impacts on reliability

<table>
<thead>
<tr>
<th>CO$_2$ Tons/MWh</th>
<th>Fuel (Generating Plant Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.62-1.64</td>
<td>Coal (Healy 1, Healy 2, Aurora Energy (IPP))</td>
</tr>
<tr>
<td>1.11-2.53</td>
<td>Diesel (Zehnder 1, Zehnder 2, Delta (backup plant seldom used))</td>
</tr>
<tr>
<td>0.53-0.54</td>
<td>Naphtha (North Pole Expansion Plant)</td>
</tr>
<tr>
<td>0.42-0.56</td>
<td>Natural Gas (Purchased from Anchorage utilities.)</td>
</tr>
<tr>
<td>0.00 +</td>
<td>Wind (Eva Creek, Delta Wind (IPP))</td>
</tr>
<tr>
<td>0.00 +</td>
<td>Solar (Solar Farm)</td>
</tr>
<tr>
<td>0.00</td>
<td>Hydro (Bradley Lake. Delivered through the grid intertie.)</td>
</tr>
</tbody>
</table>

+ Wind and solar production must be paired with diesel or naphtha generation. GVEA does not use energy storage for wind or solar regulation.

- Greenhouse CO2 uptake for our project has not yet been calculated. We are in the process determining the best mix of crops, and the optimal greenhouse acreage for our CHP plant. There is a variation between crops and conditions.
- Between 340 ppm – 700 ppm, CO2 can increase growth by 30-40%.
MODULARITY and SCALING

Gasifier/Engine System is Modular and Scalable

Multiple gasifier trains and engines can create powerplants from 1 MWe to 30 MWe+
AK-DGGS IDENTIFIED 37 VILLAGES WITH COAL NEARBY
RADICALLY ENGINEERED SYSTEM

- Make it work at 10 to 18 MWe
 - Economies of Scale working against us
- Make it work at village scale <2MWe
- Integrate with diesel infrastructure
- Make it work with biomass & waste products
- Match greenhouse to CO2 + Heat availability + Power
USEFUL IN LOWER-48, TOO!

• Coal plants are best suited for baseload operation because it requires a long period to ramp up and to ramp down.

• Syngas/Engine combinations has the potential for making coal a cost competitive resource meeting flexible energy demand and fluctuating generation.
BUT MOST IMPORTANTLY
...POWER ALASKA’S INTERIOR
RISK FACTORS

• Except for the HMI Gasifier, all components are available commercially
 – HMI gasifier components are well understood and documented

• Emission controls could be *the* key factor to be addressed
 – Fairbanks is in an EPA designated “Serious non-attainment area for PM 2.5”
MEET THE TEAM

• Diane Revay Madden, NETL
• Brent J Sheets, UAF
• Rolf Maurer & David Thimsen, HMI
• Harvey Goldstein & Team, Worley Group Inc.
• Chilkoot Ward & David Fish, Aurora Energy
• Randy Hobbs, Hobbs Industries
• Bernie Karl, Chena Power
• Alberto Pettinau, Sotacarbo
• Mariana Hill, Western Energy Services
• Mayor Mike Welch, City of North Pole
• Bill Rogers, NETL
QUESTIONS?

Brent J Sheets
907-750-0650
bjsheets2@alaska.edu