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The overall goal of the proposed effort is to develop a small scale,
modular air separation unit providing 10-40 tons/day of high purity
oxygen to a 1-5 MW gasifier at low cost and high efficiency

e Mixed conducting two phase material capable of
separating oxygen at 700-800°C.

* Planar membrane/support structure

» Utilize the difference in oxygen partial pressure 20> pO;/!
across the membrane to drive oxygen from air, no '
electrical energy needed for oxygen separation 20, " pO



%/ Background
Pacific Oxygen Separation Techniques
Northwest

NATIONAL LABORATORY c..’?'}-‘ogenic

» Cryogenic Air Separation — mature
* Low energy demand at high capacity (4000 T/day)

* Energy demand very high at low capacity (i.e 10-40
T/day)

* Very high purity (99+)
» Pressure Swing Adsorption (PSA) — mature
* Economical at lower capacities (1.e. 300-400 T/day)
* Purity ~90-93%
> Polymer Membranes — mature
* Low purity (~ 40%)

» Ceramic Membranes — R&D

.« High purity (99+) " S
|« Thermal integrati |
: ermal in egra. ion | N IR ALY 13- 5 s i
| * (Can be economical depending on oxygen permeability | — !
E e Examples: OTM (Oxygen Transport Membrane) PO ) i

ITM (Ion Transport Membrane) propuére £=:




Background
Ea;‘?itﬁc t Proposed Ceramic Membrane Technology
ortnwes

NATIONAL LABORATORY

Planar Design

Planar vs Tubular Design

* Ease of manufacturing

* High surface area

* Increased sealing surface arca

* Medium temperature (700-900°C)

* Two phase composite membrane (c; and G,)
* SOFC design experience at PNNL
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Bilayer Structure

Thin composite membrane _ | Porous support (~ 0.5-1mm)
(~ 10 pm)
Composite membrane Porous Support
* Dense * ~50% dense
* High o, and o, * TEC match to membrane
* Compatible with glass seal * Mechanical integrity
* Inexpensive fabrication * Co-fired w/ membrane

 No electrodes

[Design will leverage SOFC stacks developed at PNNL}
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Composite Membrane

Thin composite membrane (~ 10 um)

,rq Ay ﬁ,rq 13y g,rﬂ g

;‘* Lrh Lt AT LY

* Two phase composite (c; & G,)
e Similar TEC lonic Conductor

* Doped CeO,

* Limited interaction during firing

* High O; phase Electronic Conductor

* Sufficient 6, phase  Doped LaMnO

* Compatible with glass seal e Doped LaFeO 3
3

Perovskite
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Composite Membrane O, Permeability/Flux Calculations

Case 1 Case 2

Input Parameters
Ionic conductivity: 0.0233 0.05 S/cm ¢ G
1
P(02)1: 0.2 0.2 atm R I II
P(02)2:  1.00E-04  1.00E-04 atm p 02 and p02
Temp(°C: 700> 800D * Temperature
Temp (K): 973 1073 .
Thickness (um) 0 0 e Membrane thickness
Thickness (cm): 0.001 0.001 ® le Of Oxygen/day
Flux (A/cm2): 3.71 8.78 e (Cell area
Flux (moles O2/cm2-s): 9.62E-06 2.28E-05
Flux (grams O2/cm2-s):  3.08E-04  7.28E-04 * Cells/stack
Flux (grams O2/cm2-h): 1.11 2.62
Flux (grams O2/cm2-day): 26.59 62.93
Flux (Ibs 02/cm2-day):  5.86E-02  1.39E-01 Output Value
Pounds of oxygen required/day: 20000 20000 —> # of stacks required
Total cell area required (cm2):  341155.97 144162.40
Cell area(cm?2): 420 420
# of cells required: 812.28 34324 # of stacks appears to be very
Cells/stack: 100 100
# of stacks required: 8.12 D 3.43 D reasonablef orall ton/day

o o modular ASU
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Membrane and Support Characterization

Year 1 Bilayer Characterization
Membrane Oxygen Permeability

(Bilayer Interactlons \ L(’Alosizl’;:;eﬁo” No inreifntci-r.'.’reacrion
Year 2 Oxygen Permeability Optimization | _ . =’ St
(Barrier layers, Catalysts)
\Preliminary Stack design y,
Scale up 100 cm?
Year 3 Cell assembly w/ stainless frames & glass seals T v
Oxygen Permeability Optimization e
Cost Analysis

Glass seal around perimeter

Scale up to 400 cm?

Year 4 Cell assembly w/ stainless frames & glass seals
Oxygen Permeability Optimization
Cost Analysis

Corrugated S§

Bilayer
Corrugated SS
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Factors Critical for Project Success

* Low-cost materials to enable market penetration and maximize energy
efficiency

 Minimize interactions between 1onic and electronic conducting phases

Co-sinter thin composite membrane on low cost porous supports

with minimal warping and cracking

* Design a planar stack architecture with low-cost fabrication processes
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lonic Conductor Electronic Conductor

* Doped CeO,
* Smq.' —2[Vy 7]

* Doped LaMnO,/LaFeO,
* Acceptor doped p-type

Fluorite structure Perovskite

~ ' - Sintered Densi ' '
Sintering Shrinkage ty Composite Dilatometry

2 SDCC/LMS0 (vol%) Material N (x 10_5)

0 Sintering | sp50 | e0/40 | 70/30

3 Temperature (*C) SDCC-ILM90 50/50 11.11

) 1300 99+ 98.8 97.2

i 1400 %9+ | 9o+ | 9o+ SDCC-I.M90 60/40 11.57

i S SDCC-IM90 70/30 12.02

100 GDC20-L.SM20 50/50 | 11.83
/ GDC20-LSM20 60/40 | 11.89
GDC20-LSM20 70/30 | 12.09

Relative expansion, %

o theoretical density

43

0 500 1000 1500

SDCC-LSM20 60/40 11.93
Temperature, °C e SDCC-LSM20 70/30 11.91

90
1250 1300 1350 1400 1450 1500 1550

*  Minimize stress during sintering
* Particle size/surface area, composition

Sintering Temperature (°C)

e Membrane needs to be hermetically sealed *  Typical values of o are ~ 12 x 10-9/°C
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Interaction Studies Ce, Sm, ,0, . Lattice parameter

25000

5.4480

20000 °®

5.4470

5 4460 SI' dlffusmg il’ltO /
- M oet! ’ fluorite structure

. 5.4450 \

o 5.4440 .
e 5.4430
NS, 5.4420 !
e - . — T 1250 1300 1350 1400 1450 1500 1550
’ ’ Yo : ! Temperature, °C

Limited interaction, no 2" phase formation

Diffusion of Sr into ceria fluorite structure at > 1400°C
More formation of LaMnO; at higher temperatures
Sintering < 1400°C to maximize oxygen permeability
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Electrical Conductivity lonic Conductivity
Sintered 1400 C

850 800 750 700 650 600 550 500

60/40 GDC/LSM

é ’};) Pure 100% ceria phases
: —— """ 70/30GDC/LSM ®
:-.g:‘ 10 & - . P, PY > PY ° & - & @ £
g —_T 80/20 GDC/LSM s
0 —— GDC-20
550 650 750 850 950 25 —+— GDC-20 literature
Temperature (°C) SDC-20 literature
1000;:E
* Electrical conductivity (c,) controlled
by perovskite phase * o, ~0.07 at 800°C and 0.03 at 700°C
* o,~ 4 orders of magnitude greater than * ~2/3 o;value used in composite
ionic conductivity (G;) calculations

* Percolation in perovskite phase * Percolation in both phases
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Sintered at 1300°C
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Permeability Measurements Self-supported composite membranes
(~ 600 um)

o
0, = o Pure <1{
WV A = g S oo
i i % B
o
i g 002 | L g
i o
o — — - I
Temper ()
- * o, calculated from oxygen permeability
measurements
|  Slightly lower than predicted value (Co

Air out doplng)
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Results
W/ Composite Membrane Characterization e,

600 70 -
Self Supported Supported ", Supported Membrane
500 Membrane Membrane 60
k J | | 700°C ..
. r r 50 [
2400 - -
- g 40
A 300 = e, 750°C
S *-....700°C w30 [T ~10-15 wm
* 200 T ...—-_.;[}'('- : 5 1) ' .
100 Baloli L e *"'Jin 800°C ; M Wy
a0~ ( S W “tass, 1—'_:*-.—,,———1.'"J ' ' =il 3.\
0 iy Ll 3-'1’!'1 0 @a
700 600 500 400 300 200 100 0 150 100 50 0
Membrane Thickness (microns) Membrane Thickness (microns)

* To have a realistic number of stacks for producing 10 T/day of O,
—> the membrane thickness needs to be on the order of 10-15 um.
* Membrane will need to be supported =2 Bilayer Structure
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Thin composite membrane
Porn ke /
. : i s s ' s

||.r-.|i.L * _.-" Ii eal { l'“"[“"ﬂ‘“

Mlurry Dhsg o Blaade !
Carmmie bajpw
= 4
- |
fom—l Y

Ball milling
Tape casting

- v
Hraliag

+
Densified Binder burnont
CCFAMIC &Sintering Lamination

* Dense and thin membrane to maximize the oxygen permeability

* Thick and porous support to provide mechanical integrity and maximize gas diffusion
* Limited interaction during co-sintering

* Match sintering shrinkage

* Control of microstructure (thickness, size and distribution of porosity, etc.)
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Membrane Thickness Vol % Porosity Size & distribution of Porosity

. membrane

membrane

- 30 vol %

support

1S5.0kV BSCOMPO '\ N at g ..
ienorane i e . 12 um fugitive phase

support *

15.0kV BSCOMPO SEM
memorane

) - .
Bm 10/2021 0 T l 0,
15.0kV BSCOMPO SEM WD 10.0mm 15:34:37 :’ YO A0

support

—
15.0kV BSCOMPO SEM

Tailor porosity by controlling Tailor size & distribution of
Tailor the membrane thickness by the amount of fugitive phase porosity by controlling size of

controlling the casting thickness used in tape cast suspension the fugitive phase
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Membrane

Membrane

Support

Support

SEM  MAG: 3000x HV: 15KV WO: 100mm Px: M nm

I L J A Jl I J_Jt PR J\ J\;-A L

LaMnO3
[ | !
| .

Intensity

1 | 1 1 LaAlO3 |
“ 1 LaMnO3
| 1 R . | LaAlO3 , i ; ‘|E . ” ; ,
I — L . ,\_\:t‘ l i I | | | Mu.\l:j)lr
— ' ] ]
2Tl;.eta
Insulating LaAlO; formation at No interfacial reaction w/

membrane/support interface — compositional change —
extremely low oxygen flux k future direction /
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1375°C / 1325°C 1300°C \ 1275°C
.-‘ ‘.‘\: ¢ o \ ‘ i.‘; i) , .‘-' I"‘-..r

Sintering Temperature

Baerr;s:r 1\g/IrzriIrlll;rane o D.ense M.embrane : £9rous Membrane
Reduced number of TPBs * Finer grains . nest .mlllcrostrulcl:ture |
Greater interaction/ * Increased number of TPBs Potentially non-hermetic

. .  Less interaction/ diffusion of ions * Reduced strength
diffusion of ions
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Planar Membrane w/ Barrier Layers w/ Barrier Layers & Catalyst

TPB

Catalyst

0, + 4e 2 20* (0, dissociation) TPB \
' i
‘ \{ porous layer

AAAAAAAAAAAAAA

Process Stream

s P-PO%.5
oS IP

LN

TPB Product Stream

(02)
20% 2 0, + 4e (0, recombination)

TPB TPB

e Reaction area - 2-D surface * Expanded reaction area - 3-D surface * Expanded reaction area - 3-D surface
e Surface dominated — reduced * Improve reaction kinetics — increase * Further improve reaction kinetics —
number of TPBs on both sides use of know catalyst at TPBs

thickness
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Planar Membrane w/ Barrier Layers

lpm 1271 - 100nm 4/7/2021
15,0kV BSCOMBO SEM WD 10.0mm 13:5: x 30, 150KV LBSCOMPO SEM WD 10.0mm 11:05:15 % 70,000 2.00KV SET
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Planar Membrane w/ Barrier Layers w/ Barrier Layers & Catalyst

(=]
o
n
1)
i

w/ catalyst (60/40)

0.4 70/30 0.4 70/30

o
B
=
~
(V8]
e

o
w

” 7 60/40

w/ barriers 60/40

w/ barriers

0.2

[=]
P

o T 60/40

0.1 o

o
[y

et 50050

---------------- L andh c e ®

Oxygen Permeability (107 — mol/cm? s)
Oxygen Permeability (107 — mol/cm? s)
Oxygen Permeability (107 — mol/cm? s)

L
650 750 850 95 650 750 850 95(

650

Temperature C Temperature C Temperature C
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Gd doped CeO, w/ La, ,Sr, Je, 5Co,,0;(LSCF)

B
<
1.2 O
70/30 LSCF| [~ &
1.1 )
w/ barriers -
1
0.9 — . . .
~4-5 X performance Will also investigate
o 7 of LSM based membranes use of catalysts on
«S ) e LSCF based membranes
_O 0.6 ‘d’-"
E . o -
2 e P 70/30 .
o v L !
e o 60/40 8
e w/ barriers | T s
60/40 =
i S B il T T
8"”"""3'—..‘“&':0 50/50
0 8. 0.8 8808 —_
650 750 850 950

Temperature C
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S8 frames

membrane
Glass seal around perimeter

— 3 s
--.'-u _.--1. —'-'-_a—.-.-'-'-_-—-

Tt

= “% as iselation plates
: nme S P

Corrugated S§§
glass seals

Bilayer

Glass Sealed 02 Zone

Membrane Corrugated




o

Pacific
Northwest

NATIONAL LABORATORY

Ceramic Membrane Technology

Low-Cost Materials and Processes

Materials

» Membrane (least amount of material used ~ 10-15 um thick)
* Jonic conductor - Ce,  Gd, O,
* Electronic conductor — Lay -5Sr,,0;_,

» Support — MgO

» Glass seal (BaO-Al,0;-S10,)

» Frames, gas isolation plates and corrugated supports
= 400 series stainless steel

Fabrication processes

» Membrane and support used traditional thick film processing

* Tape casting — - — __
* Screen printing — r' iy~ &y —|= j—» &

/
Dymsified
................. e : - coramic

Hall milling

» Stainless steel frames, gas isolation plates and corrugated supports
will be stamped
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Planned/
Fiscal ID Description Expe cte.d Complete Verification M ethod
Year Completion
Date
: Bilayer structure will be flat and crack free with a dense
Demonstrate scale up of bilayer . L
3 M1 3/31/2021 v membrane co-sintered on a porous support using bilayer
structure (7.5 cmx 7.5 cm) ,
structures m M2
, Opt , oxygen flux for 1 , Oxygen flux values will be compared to theoretical values
3 M2 diameter bilayer structures using | 4/30/2021 v _ _ 5
barricr layers and catalysts calculated at various temperatures on bilayer structures of Scm™.
_ _ Redesign/reconfigure oxygen permeation measurement set-up to
O, permeation for 3" diameter , ) ,
3 M3 5 11/30/2021 test bilayer structures up to 50 cm™. Compare permeation
(=30 em’) values of larger 50 e’ bilayers to 5 e’ samples.
Demonstrate a stack build utilizing 7.5 cm x 7.5 cm bilayer
3 M4 icati 2y | 11/30/2021
3 cell stack fabrication (36 ) structures with low cost frames and glass seals.
Complet limmary techno- ' s on the ASU
3 M5 Techno-economic analysis 11/30/2021 OTPIEE @ pI v .e'c 0-economic analysis on the
technology baselining the cost and performance
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