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Project Description and Objectives

The overall goal of the proposed effort is to develop a small scale, 
modular air separation unit providing 10-40 tons/day of high purity 
oxygen to a 1-5 MW gasifier at low cost and high efficiency

• Mixed conducting two phase material capable of 
separating oxygen at 700-800◦C.

• Planar membrane/support structure

• Utilize the difference in oxygen partial pressure 
across the membrane to drive oxygen from air, no 
electrical energy needed for oxygen separation
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Oxygen Separation Techniques
Background

 Cryogenic Air Separation – mature 
• Low energy demand at high capacity (4000 T/day)
• Energy demand very high at low capacity (i.e 10-40 

T/day)
• Very high purity (99+)

 Pressure Swing Adsorption (PSA) – mature
• Economical at lower capacities (i.e. 300-400 T/day)
• Purity ~ 90 - 93%

 Polymer Membranes – mature
• Low purity (~ 40%)

 Ceramic Membranes – R&D 
• High purity (99+) 
• Thermal integration
• Can be economical depending on oxygen permeability
• Examples: OTM (Oxygen Transport Membrane) 

ITM (Ion Transport Membrane)
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Proposed Ceramic Membrane Technology 

Planar Design 

Tubular Design 

Planar vs Tubular Design

• Ease of manufacturing
• High surface area
• Increased sealing surface area
• Medium temperature (700-900◦C)
• Two phase composite membrane (σi and σe)
• SOFC design experience at PNNL

Background
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Proposed Ceramic Membrane Technology 
Background

Thin composite membrane
(~ 10 μm)                  

Porous support (~ 0.5-1mm)

Bilayer Structure

Composite membrane 
• Dense
• High σi and σe
• Compatible with glass seal
• Inexpensive fabrication
• No electrodes

Porous Support
• ~ 50% dense
• TEC match to membrane
• Mechanical integrity
• Co-fired w/ membrane

Design will leverage SOFC stacks developed at PNNL 
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Background

Proposed Ceramic Membrane Technology 

Thin composite membrane (~ 10 μm)                  

• Two phase composite (σi & σe) 
• Similar TEC
• Limited interaction during firing
• High σi phase
• Sufficient σe phase
• Compatible with glass seal

Material Selection

Ionic Conductor
• Doped CeO2

Electronic Conductor
• Doped LaMnO3
• Doped LaFeO3

Composite Membrane

O2-
e-

pO2
I

pO2
II



8

Background

Proposed Ceramic Membrane Technology 

Composite Membrane O2 Permeability/Flux Calculations

Input Parameters
• σi
• pO2

I and pO2
II

• Temperature
• Membrane thickness
• lbs. of oxygen/day
• Cell area
• Cells/stack

Output Value
 # of stacks required

Ionic conductivity: 0.0233

P(O2)1: 0.2
P(O2)2: 1.00E-04

Temp (°C): 700
Temp (K): 973

Thickness (um): 10
Thickness (cm): 0.001

Flux (A/cm2): 3.71
Flux (moles O2/cm2-s): 9.62E-06
Flux (grams O2/cm2-s): 3.08E-04
Flux (grams O2/cm2-h): 1.11

Flux (grams O2/cm2-day): 26.59
Flux (lbs O2/cm2-day): 5.86E-02

Pounds of oxygen required/day: 20000
Total cell area required (cm2): 341155.97

Cell area(cm2): 420
# of cells required: 812.28

Cells/stack: 100
# of stacks required: 8.12

0.05 S/cm

0.2 atm
1.00E-04 atm

800
1073

10
0.001

8.78
2.28E-05
7.28E-04

2.62
62.93

1.39E-01

20000
144162.40

420
343.24

100
3.43

Case 1 Case 2

# of stacks appears to be very 
reasonable for a 10 ton/day 
modular ASU
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Project Schedule

Proposed Ceramic Membrane Technology 

Membrane and Support Characterization
Year 1 Bilayer Characterization 

Membrane Oxygen Permeability

Bilayer Interactions
Year 2 Oxygen Permeability Optimization

(Barrier layers, Catalysts)
Preliminary Stack design

Scale up 100 cm2

Year 3 Cell assembly w/ stainless frames & glass seals
Oxygen Permeability Optimization
Cost Analysis

Scale up to 400 cm2

Year 4 Cell assembly w/ stainless frames & glass seals
Oxygen Permeability Optimization
Cost Analysis
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Proposed Ceramic Membrane Technology 

Factors Critical for Project Success

• Low-cost materials to enable market penetration and maximize energy 
efficiency

• Minimize interactions between ionic and electronic conducting phases
• Co-sinter thin composite membrane on low cost porous supports

with minimal warping and cracking
• Design a planar stack architecture with low-cost fabrication processes
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Results
Composite Membrane Characterization

Ionic Conductor

• Doped CeO2
• SmCe′ → 2[VO

°°]

Electronic Conductor

• Doped LaMnO3/LaFeO3
• Acceptor doped p-type

Fluorite structure Perovskite

Sintering Shrinkage

• Minimize stress during sintering
• Particle size/surface area, composition

Sintered Density

• Membrane needs to be hermetically sealed

Composite Dilatometry

• Typical values of α are ~ 12 x 10-6/°C
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Results
Composite Membrane Characterization

Interaction Studies

• Limited interaction, no 2nd phase formation
• Diffusion of Sr into ceria fluorite structure at > 1400°C
• More formation of LaMnO3 at higher temperatures
• Sintering < 1400°C to maximize oxygen permeability

Ce0.8Sm0.2O2-x Lattice parameter

Sr diffusing into 
fluorite structure
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Results
Composite Membrane Characterization

Electrical Conductivity

• Electrical conductivity (σe) controlled 
by perovskite phase 

• σe ~ 4 orders of magnitude greater than 
ionic conductivity (σi)

• Percolation in perovskite phase

• σi ~ 0.07 at 800°C and 0.03 at 700°C
• ~ 2/3 σi value used in composite 

calculations
• Percolation in both phases

Pure 100% ceria phases

Ionic Conductivity
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Results
Composite Membrane Characterization

Sintered at 1300°C
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Results

Composite Membrane Characterization

Permeability Measurements Self-supported composite membranes 
(~ 600 µm)

• σi calculated from oxygen permeability 
measurements

• Slightly lower than predicted value (Co 
doping)
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Results

~ 10-15 µm

• To have a realistic number of stacks for producing 10 T/day of O2 
 the membrane thickness needs to be on the order of 10-15 µm.

• Membrane will need to be supported  Bilayer Structure

Composite Membrane Characterization



17

Results
Bilayer Characterization

• Dense and thin membrane to maximize the oxygen permeability
• Thick and porous support to provide mechanical integrity and maximize gas diffusion
• Limited interaction during co-sintering
• Match sintering shrinkage
• Control of microstructure (thickness, size and distribution of porosity, etc.)
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Bilayers with Controlled Microstructures
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Membrane Thickness

Tailor the membrane thickness by 
controlling the casting thickness

Vol % Porosity

Tailor porosity by controlling 
the amount of fugitive phase 
used in tape cast suspension

Size & distribution of Porosity

12 µm fugitive phase

1 µm fugitive phase

Tailor size & distribution of 
porosity by controlling size of 
the fugitive phase

~10 µm
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Interaction between Membrane and Support
Results
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Densification of Membrane During Co-firing
Results

1325°C1375°C 1300°C 1275°C

• Dense Membrane
• Larger grains
• Reduced number of TPBs
• Greater interaction/ 

diffusion of ions

• Dense Membrane
• Finer grains
• Increased number of TPBs
• Less interaction/ diffusion of ions

• Porous Membrane
• Finest microstructure
• Potentially non-hermetic
• Reduced strength

Sintering Temperature
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Results
Bilayer Microstructure Designs 

• Reaction area - 2-D surface
• Surface dominated – reduced 

thickness

• Expanded reaction area - 3-D surface
• Further improve reaction kinetics –

use of know catalyst at TPBs

Planar Membrane w/ Barrier Layers

O2 + 4e- 2O2- (O2 dissociation)

2O2- O2 + 4e- (O2 recombination) 

Product Stream
(O2)

Support

Membrne

Support

w/ Barrier Layers & Catalyst

Support

Catalyst

• Expanded reaction area - 3-D surface
• Improve reaction kinetics – increase 

number of TPBs on both sides
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Bilayer Microstructures

Planar Membrane w/ Barrier Layers w/ Barrier Layers & Catalyst

1325°C 1375°C
catalyst

Gd doped CeO2 w/ La0.75Sr0.2MnO3
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Bilayer Permeability

Planar Membrane w/ Barrier Layers w/ Barrier Layers & Catalyst

w/ catalyst (60/40)
70/30

60/40 
w/ barriers

60/40

50/50

1 X [ ]

0.5 X [ ]

Gd doped CeO2 w/ La0.75Sr0.2MnO3
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Bilayer Permeability

Gd doped CeO2 w/ La0.75Sr0.2MnO3 (LSM20)
Gd doped CeO2 w/ La0.6Sr0.4Fe0.8SCo0.2O3 (LSCF)

Will also investigate
use of catalysts on
LSCF based membranes 

~4-5 X performance
of LSM based membranes
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Ceramic Membrane Technology 
Stack Design



26

Ceramic Membrane Technology 
Low-Cost Materials and Processes
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Ceramic Membrane Technology 
Next Steps

Fiscal 
Year

ID Description

Planned/ 
Expected  

Completion 
Date

Complete Verification Method

3 M1
Demonstrate scale up of bilayer 

structure (7.5 cm x 7.5 cm) 3/31/2021 
Bilayer structure will be flat and crack free with a dense 
membrane co-sintered on a porous support using bilayer 

structures in M2

3 M2
Optimize oxygen flux for 1" 

diameter bilayer structures using 
barrier layers and catalysts 

4/30/2021 
Oxygen flux values will be compared to theoretical values 

calculated at various temperatures on bilayer structures of 5cm2.

3 M3
O2 permeation for 3" diameter     

(~50 cm2)
11/30/2021

Redesign/reconfigure oxygen permeation measurement set-up to 
test bilayer structures up to 50 cm2.  Compare permeation 

values of larger 50 cm2 bilayers to 5 cm2 samples.  

3 M4 3 cell stack fabrication (56 cm2) 11/30/2021 Demonstrate a stack build utilizing 7.5 cm x 7.5 cm bilayer 
structures with low cost frames and glass seals.

3 M5 Techno-economic analysis 11/30/2021
Complete a preliminary techno-economic analysis on the ASU 

technology baselining the cost and performance
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