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Research Objective
Project Objective

The objectives of this task are to design a metal oxide 

carrier material capable of separating oxygen from air 

and to develop a reactor based on metal oxide carrier 

materials

• The carrier will rapidly store and release oxygen

• A knowledge base for the optimization of carrier materials will be 

created allowing adaptation to different applications

• NETL MFiX Team will collaborate to design an oxygen production 

reactor

Value Proposition: An oxygen carrier-based air separation unit could 

provide a scalable oxygen source for an oxygen blown gasification 

system enabling higher quality syngas, the use of alternate 

feedstocks, and the production of hydrogen
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Research Objective
Alignment with Program & Stakeholder Needs

Development of an improved oxygen carrier 

material and oxygen production reactor would 

support the need of the Gasification Program for 

low-cost oxygen.

• Low-cost oxygen can be used for pre-combustion 

carbon capture reducing the carbon footprint of a 

gasification system.

• Alternate fuels such as municipal solid waste and 

waste plastic perform best in an oxygen blown 

gasification system.

• An oxygen carrier-based system would support the 

development of small modular gasification systems 

by providing an alternative to cryogenic oxygen 

which can be prohibitively expensive at small scales.
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Research Objective
Material Development

Goals and Metrics 

• Design, synthesize, and characterize a metal oxide 

carrier

• Tuneable Desorption Temperature

• Ideal operating temperature below 700 °C

• Tuneability for adaptation into multiple system 

designs

• Rapid Kinetics

• Rate should exceed 0.2 wt%/min for complete 

desorption in less than 10 minutes

• Oxygen Capacity

• Capacity should exceed 2 wt% oxygen

• Stability

• The material needs to be cyclable with little to no 

attrition

Cyclability

Rapid Kinetics

Tuneable
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Reactor Design

Project Goal:  
To develop a computational model that captures the 
oxygen storage/release potential of NETL’s material, 
Sr0.75Ca0.25FeO3;   to leverage simulation to design a 
pilot-scale fixed bed, perovskite sorbent oxygen 
separation unit.
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Project Approach

• NETL has demonstrated the ability to control capacity, desorption temperature, and 

rate through compositional changes in the carrier material

• NETL designed a carrier that meets capacity and rate objectives

• Carrier demonstrated greater than 2 wt% oxygen capacity

• NETL carrier achieved rates in excess of 2.0 wt%/min much greater than the 

desired 0.2 wt%/min

• NETL carrier demonstrated stability over more than 10,000 cycles with no loss in 

activity or attrition

• NETL designed carrier demonstrated 15% better performance than baseline with a 

20% reduction in cost of materials

• Ellingham Diagrams for the perovskite carrier have been calculated and 

experimentally validated

• Preliminary reactor design using NETL’s MFiX software has initiated

Accomplishments-to-Date

IMAGE 
FILL
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Project Approach
Overall Approach

• NETL uses a multi-disciplinary approach to develop oxygen 

carrier materials which is enabled by the wide variety of 

internal capabilities

• NETL has extensive experience in the development of oxide 

materials including perovskites, delafossites, pyrochlores, and 

ferrites which is leveraged to design, synthesize, and 

characterize carrier materials

• Atomistic modelling is used to understand material properties 

and identify promising candidate materials by creating 

Ellingham Diagrams

• NETL’s MFiX software is used to design and model an oxygen 

production reactor based on the carrier materials that 

demonstrate the best performance

• A techno-economic assessment is performed on the MFiX

developed design which provides a comparison to currently 

employed technologies and potentially identifies new carrier 

needs
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Current Research
Overview

• Materials Design, Synthesis, and Characterization

• Reactor Design

• Techno-economic Assessment
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Current Research
Overview

• Materials Design, Synthesis, and Characterization

• Reactor Design

• Techno-economic Assessment
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B-site substitution

May improve kinetics depending 
on B-site dopant’s identity

• Cobalt – best dopant to drive 
oxygen release towards lower 
temperatures 

• Nickel – strong replacement in 
cobalt-free systems, smaller 
kinetic effect

Rapid, Reversible Oxygen Carriers

Mesopore Introduction

Increased porosity and 
surface area as synthesis 
temperature lowered

• Higher surface area – faster 
kinetics, lower overall 
storage capacity

• -
2 μm

Metal (oxide) decoration

Combination of  metal B-site 
substitution/surface decoration 
on mesoporous materials

• Stackable improvements to 
Sr1-xCaxFeO3 materials

• Many potential decorations 
still under study

Sr1-xCaxFeO3-based systems for low temperature activity 
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B-site Substitution in Sr1-xCaxFeO3

Thermodynamic Improvements

• Additional calcium/cobalt both lower 
O2 desorption temperature

• Combinable

Kinetic Improvements

• Oxygen release faster, uptake slower as Co 
content increases

• Top Co-rich catalysts outperformed by lower Co 
contents in Sr0.7Ca0.3Fe1-xCoxO3 (x = 0.05-0.15) at 
most temperatures. 

Air/N2 cycling traces performed 
at 400°C in a TGA. 
Sr0.8Ca0.2Fe0.4Co0.6O3 (lit.) 
outperformed by lower Co 
content catalysts.  

O2-TPD of Sr0.7Ca0.3Fe1-

xCoxO3 with variable Co 
contents. Additional cobalt 
systematically lowers the 
desorption temperatures. 

ChemSusChem 2021, 14, 1893.

Cobalt Substitution
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B-site Substitution in Sr1-xCaxFeO3

• Nickel inclusion improves kinetic 
response 
• Similar storage capacities (> 2.2 wt.%)
• >50% more O2 over set time y = 0.06 vs. 

undoped

• DFT suggests thermodynamic 
benefits of  Ni
• Limited maximum Ni doping ~ 0.10 without 

NiO impurities

Air/N2 cycling traces
performed on
Sr0.75Ca0.25Fe1-yNiyO3

at a) 400°C and b)
450°C using TGA.

Manuscript in preparation; Patent process underway

Black – Sr0.75Ca0.25FeO3

Red – Sr0.75Ca0.25Fe0.94Ni0.06O3

Blue – Sr0.75Ca0.25Fe0.88Ni0.12O3

Average vacancy formation
energies Ef, for Sr1-xCaxFe1-yNiyO3

from DFT.

Nickel Substitution
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Mesoporous Sr1-xCaxFeO3

• Surface area increases as synthesis 
temperature decreases
• 700oC – 8.85 m2/g
• 750oC – 5.43 m2/g
• 800oC – 3.35 m2/g
• 900oC – 0.71 m2/g
• 1000oC – 0.12 m2/g

• Thermodynamic benefits
• Highest surface area, lower oxygen uptake/release 

temperatures

• Kinetic benefits observed at lower 
temperatures
• >100% more oxygen in 10 min at 400 °C for 

Sr0.75Ca0.25FeO3 synthesized at 800 °C
• 750 °C not fastest due to lower priming temperature 

(750 °C in N2)

• Removal of  residual carbon necessary before cycling 
(800°C in N2 performs best)

Manuscript in preparation; Patent process underway

20 μm

Preliminary Research



14

Mesoporous Sr1-xCaxFeO3

• Sr0.75Ca0.25FeM0.03O3 composition 
created in one-pot synthesis
• Ni – surface decoration
• Zn – structural substitution

• Oxygen release faster in select Sr1-

xCaxFeO3 systems
• Up to 2-3x faster (example to right)
• Further experimentation still needed to 

confirm benefits
• Effects only previously observed w/ Pt 

or Pd in literature

• To be investigated
• Cu, Mn, Mo, Co, etc. 
• One-pot synthesis vs. post-synthesis 

modification

Manuscript in preparation

5 μm

Ni

100 nm

Ni

Improving Mesoporous Materials
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Current Research
Overview

• Materials Design, Synthesis, and Characterization

• Reactor Design

• Techno-economic Assessment



16

Oxygen Reactor Development

Sr0.75Ca0.25FeO3

Experimentation shows that
has 

excellent and repeatable O2

storage and release 
capability in the 
temperature range 
400 – 600°C

Sr0.75Ca0.25FeO3

Kinetic rates are derived to capture absorption and 
desorption swings across temperature and 
concentrations of O2.

TGA cycles of Sr0.75Ca0.25FeO3

at 450°C 

ABS ABS ABS

DES DES DES

Rates are validated against experimental measure

LABORATORY SIMULATION
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1 He, Y., Zhu, X., Li, Q., Yang, W., “Perovskite Oxide Absorbents for Oxygen Separation,” AIChE Journal, Dec 2009, Vol 55, No 12, pp.3125-3133.
2 Bulfin, B., Vieten, J., et.al, “Isothermal relaxation kinetics for the reduction and oxidation of SrFeO3 based perovskites,” Phys. Chem. Chem.Phys., 2020,    

Vol 22, pp. 2466-2474.
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Changing Simulation Scale

Oxygen Reactor Development

Granular filling used to 
create an initial condition 
for perovskite modeling in a 
0.021m diameter tube 
(matching Thermosolv unit).

He reaction kinetics 
(absorption) applied in 
DEM model at very small 
scale (300 grams).

He and Bulfin kinetics applied in MFiX-TFM model at mid-scale
(~1 ton)  including heat transfer between bed and tubes.  

3 Doris, C., Lu, E., et.al. “High-purity oxygen production using mixed ionic-electronic conducting sorbents,” University of Pennsylvania Senior Design 
Report, 2016, Paper 78.

O2 solids content Solids Temperature

cut viewfull view

Non-NETL 
experimentalists 
suggest 
concurrent 
ABS/DES in a 
circulating solar 
salt to encourage 
isothermal 
operation. 3
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Oxygen Reactor Development

Lab:  Understand the effect of 
steam on desorption mechanism 

through specialized TGA 
experimentation

Single tube with 
periodic flow reversal?

Bundle tubes to advantage heat transfer 4?
Folded plates?

Simulation:  Answer the question:  
what design works best in the 

outlined box?
O2 rich

• Maximize O2 production
• Minimize pressure drop
• Quantify efficiency
• Suggest operating 

conditions for pilot scale 
device

4 Li, F., “Radicaly Engineering Modular Air Separation System with Tailored Oxygen Sorbent,” Report to NETL, 9/20/2020.

Traditional HT PSA5?

5 Tokyo Power High Temperature PSA Unit, Sales Literature, 2016.

Future Work
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Future Work
Research Plan through Completion

• Carrier development will continue

• Investigation of surface modification

• Investigation of preparation methods that result in mesoporous 

samples

• Continue model design and validation

• The completed model will provide information on oxygen purity, 

ideal operating temperature, and adsorption/desorption cycling 

times

• Perform a Techno-Economic Assessment of the Oxygen Production 

Reactor Design ending with a Go/No Go decision

• A Go decision will lead to the pursuit of an industrial partner to 

continue reactor development

• A No Go decision will potentially lead to a need for additional 

experimental or modelling research

Mass fraction O2

absorbed at tube inlet 
for first 30s 
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Engagements & Technology Maturation
Engagement Activities 

Partners Outreach & Engagement Activities

• ThermoSolv – ThermoSolv and NETL have an NDA in place to facilitate 

discussions of carrier composition and perform complementary 

carrier testing

• Nexceris – Nexceris and NETL have been working together to scale up 

synthesis of carrier material for additional testing

• Argonne National Laboratory – NETL has been awarded time on the 

17BM beamline for structural characterization

• CMU – CMU and NETL have worked together to develop a material 

development tool that combines Numerical Modelling and Density 

Functional Theory to predict ideal carrier composition
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Conclusion

• Metal oxide carrier materials provide an alternative 

approach to produce oxygen for a wide variety of 

applications

• In the Gasification program pure oxygen provided by a 

reactor based on a metal oxide carrier could enable 

systems capable of producing power, chemicals, or 

mixtures of the two from a wide variety of feedstocks 

and with neutral to net-negative CO2 emissions
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?Questions?


