Small-Scale Engineered High Flexibility Gasifier

DOE Award No. DE-FE0031531 2021
Annual Project review Meeting

Crosscutting Research, Rare Earth Elements, Gasification Systems and Transformative Power Generation

Virtual
May, 2021
Project Team

Mikhail Granovskiy, PhD-PI
Wesley Wilson,
Chanse Appling
Amit Goyal, PhD
Project Goals

• Develop a fuel flexible and modular/shop fabricated oxygen-blown small-scale coal gasifier to produce medium BTU syngas with a low tar content

• Demonstrate gasifier performance to meet target at bench-scale (10-50 lb/h)

• Optimization of bench scale gasifier to a pilot scale module; techno-economic evaluation (TEA) for syngas conversion to liquids (fuels, chemicals)
<table>
<thead>
<tr>
<th>Project Tasks</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational modeling to optimize gasifier design</td>
<td>Done-2019 presentation</td>
</tr>
<tr>
<td>Laboratory testing to obtain model input parameters</td>
<td>Done-2020 presentation</td>
</tr>
<tr>
<td>Design and construct gasification rig</td>
<td>Underway</td>
</tr>
<tr>
<td>Commission & test & HAZOP review of gasification rig</td>
<td>Underway</td>
</tr>
<tr>
<td>Demonstrate performance</td>
<td>This presentation</td>
</tr>
<tr>
<td>Optimization of 1-5MW energy conversion system</td>
<td>This presentation</td>
</tr>
</tbody>
</table>
Bituminous Coal Selected for Modeling and Testing

Ultimate analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt.,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>84.7</td>
</tr>
<tr>
<td>H</td>
<td>4.8</td>
</tr>
<tr>
<td>N</td>
<td>1.0</td>
</tr>
<tr>
<td>O</td>
<td>3.7</td>
</tr>
<tr>
<td>S</td>
<td>0.8</td>
</tr>
<tr>
<td>Ash</td>
<td>5.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Proximate analysis

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>12.0</td>
</tr>
<tr>
<td>Volatile matter</td>
<td>26.2</td>
</tr>
<tr>
<td>Fixed Carbon</td>
<td>57.4</td>
</tr>
<tr>
<td>Ash</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Process flow diagram of small-scale gasification skid

Modular structure of gasification process allows feedstock flexibility (coal, biomass, natural gas)

- **Hopper with volumetric feeder**
 - COAL (particles < 6 mm)
 - Electric heating elements

- **PYROLYZER**
 - O2(optional)

- **Ejector**
 - Control Flow Valve
 - Removed due to an absence of budget

- **Electric boiler with pump**
 - Water tank

- **Control Flow Valve**
 - Ambient Air

- **Cyclone**
 - Coarse particles (≥5µm)

- **Non-catalytic convertor**
 - O2(excess)
 - H2

- **Ambient Air**
 - NG- nat. gas from the grid

- **Thermal Oxidizer with exhaust (induced draft) fan**

- **Gas analysis suite**
 - Sensible Heat (lost)
 - Fine filter

- **Syngas cooler**
 - Sensible Heat (lost)

- **Check valve**
 - CH4

- **Exhaust gas to stack**

Flow diagram details:
- **Pyrolysis gas**
- **SYNGAS (recycle)**
- **SYNGAS**
- **SYNGAS**
- **SYNGAS**
- **Syngas cooler**
- **Thermal oxidizer**
- **Exhaust gas to stack**

Additional notes:
- Modular structure of gasification process allows feedstock flexibility (coal, biomass, natural gas).
- Process allows for the gasification of a variety of feedstocks, including coal, biomass, and natural gas.
- The gasification process involves pyrolysis, where solid biomass is heated in the absence of oxygen to produce a gas mixture.
- The gas is then cleaned through a series of filters and heat exchangers to remove particulate matter and cool the gas.
- The cleaned gas is then used for various applications, such as power generation or further treatment.
Current P&ID diagram of gasification skid
Lab-View Screen to run gasification skid
Current picture of gasification skid

Coal hopper & volumetric feeder

Electric pyrolyzer

Non-catalytic converter

Feeder

Pyrolyzer

Converter

Fine filter

Steam generator

Thermal oxidizer
Testing of electric pyrolyzer (at 15 lb/hr of coal; 35 lb/hr of superheated steam at 120-130°C)

Heaters Power Consumption (100% is 3kW)
Total Power Consumption is 13kW
Testing of electric pyrolyzer (at 15 lb/hr of coal; 35 lb/hr of steam; residence time about 6 min.)

Temperatures of pyrolyzer wall in the middle of each heater length

Temperature of the gas at the pyrolyzer outlet is 523°C
Efficiency of pyrolysis

Raw coal

<table>
<thead>
<tr>
<th>Moisture, %wt.</th>
<th>Volatiles, %wt.</th>
<th>Fixed Carbon, %wt.</th>
<th>Ash, %wt.</th>
<th>Fixed carbon, mg</th>
<th>Ash, mg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>26.2</td>
<td>57.4</td>
<td>4.4</td>
<td>11.0</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Without moisture

<table>
<thead>
<tr>
<th>Moisture, %wt.</th>
<th>Volatiles, %wt.</th>
<th>Fixed Carbon, %wt.</th>
<th>Ash, %wt.</th>
<th>Fixed Carbon/Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29.8</td>
<td>65.2</td>
<td>5.0</td>
<td>13.1</td>
</tr>
</tbody>
</table>

Char coal

<table>
<thead>
<tr>
<th>Fixed Carbon, %wt.</th>
<th>Ash, wt%</th>
<th>Fixed carbon, mg</th>
<th>Ash, mg.</th>
<th>FC/ASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven dried</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.5</td>
<td>15.6</td>
<td>15.6</td>
<td>3.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Air dried</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.3</td>
<td>16.13</td>
<td>13.1</td>
<td>2.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>4.65</td>
</tr>
</tbody>
</table>
Performance indicators of coal pyrolysis (steam:coal \approx2:1)

Coal Mass reduction: \[
\frac{19.15 - (3.9 + 0.84)}{19.15} = 75\%
\]

\[
\approx 73\% \text{ of total carbon reduction (calculated)}
\]

LHV with raw coal: 26.1MJ/kg * 7kg/hr = 182.7MJ/hr

LHV in char = 6.7 MJ/kg-input * 7 kg/hr=46.9 MJ/hr

Electricity is not converted into heating value of pyrolysis gas

LHV in pyrolysis gas = 182.7-46.9 = 135.8 MJ/hr

74% of heating value was recovered in Pyrolysis gas

Electricity is converted into heating value of pyrolysis gas

Accounting for 64% of C is converted C+H2O→CO+H2

LHV in pyrolysis gas = 182.7-46.9+28.0 = 163.8 MJ/hr

90% of heating value was recovered in Pyrolysis gas

Electricity_pyrolyzer : 13kW *3600s = 46.8 MJ/hr

Electricity boiler : 10 kW *3600s = 36 MJ/hr

Thermal efficiency of Pyrolysis \approx50%
Non-catalytic convertor

Oxygen is taken in an excess to stoichiometric amount to burn H2 to allow partial oxidation of hydrocarbons.
Testing of the pilot-scale non-catalytic converter

<table>
<thead>
<tr>
<th>H₂, L/min</th>
<th>O₂, L/min</th>
<th>CH₄, L/min</th>
<th>Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
<td>20</td>
<td>-----</td>
</tr>
</tbody>
</table>

Non-stoichiometric oxy-hydrogen burner

\[\text{H}_2 + 0.5 \text{O}_2 \rightarrow \text{H}_2\text{O} \text{ (10 L/min O}_2\text{ left)} \]

Stoichiometric ratio between CH₄ and O₂

\[\text{CH}_4 + 0.5 \text{O}_2 \rightarrow \text{CO} + 2\text{H}_2 \]
Test results

<table>
<thead>
<tr>
<th>Units</th>
<th>H2</th>
<th>O2</th>
<th>N2</th>
<th>CH4</th>
<th>CO</th>
<th>CO2</th>
<th>C2H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>%, Vol.</td>
<td>56.7</td>
<td>0</td>
<td>2.8</td>
<td>11.9</td>
<td>30</td>
<td>5.03</td>
<td>1.05</td>
</tr>
<tr>
<td>L/min</td>
<td>23.1</td>
<td>0</td>
<td>1.14</td>
<td>4.85</td>
<td>12.2</td>
<td>2.05</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Methane Conversion = \(\frac{20-4.85}{20} \approx 75\% \)

Efficiency of 75% of methane conversion into syngas (CO+H2)

Methane-to-syngas efficiency = \(\frac{23.1+12.2}{(20*3)*0.75} \approx 80\% \)
A commercial success depends on a syngas utilization technology

Syngas \((H_2+CO) = 2\) moles

- \(H_2/CO=1\)
- Heating value = 524 kJ (LHV per 2 mol syngas)
- Power (47% efficiency) with carbon capture
- Electricity = 0.068 kWh (246 kJ)
- Electricity: 0.62 cents at 9 cents/kWh

- \(H_2/CO\approx2\)
- Fischer-Tropsch gasoline \((C_8H_{18})\)
- \(8CO+17H_2\rightarrow C_8H_{18}+8H_2O\)
- 9.1 g \(C_8H_{18}\) (per 2 mol syngas)
- Gasoline: 0.68 cents at 0.75 $ per kg (1$/l)

- \(H_2/CO=1\)
- Formic acid
- \(CO+H_2O\rightarrow HCOOH\)
- 46 g \(HCOOH\) (per 2 mol syngas)
- Formic acid: 3.2 cents at 0.70 $/kg [23] for 98% formic acid

O2: 0.1-0.2 cents

A significant relative decrease if O2 is used instead of air

Conclusions and Future Work

• Pyrolyzer was tested at 15 lb/hr of coal; steam:coal=2:1 ratio;
• Pyrolysis of bituminous coal with steam allows conversion of about 73% of carbon into pyrolysis gas
• A proprietary pilot-scale non-catalytic reactor was tested with methane with encouraging results
• The full experiment with conversion of pyrolysis gases into syngas is underway (after HAZOP analysis)
Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government (DOE-NETL, Office of Fossil Energy). Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgement

This material is based upon work supported by the Department of Energy Award Number DE-FE0031531
Thanks for Listening! Questions?