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Project objectives

Objectives: The design, fabrication, and testing of a 10 to 20 kg/day modular oxygen (O2) production

system

▪ Be cost competitive with current state-of-art process

▪ Modular process for small scale oxygen production

▪ Target lowering sorbent bed-factor

Specific Challenges

▪ Rapid PSA cycle development

▪ Structured sorbent module development

▪ Rapid cycle modeling tool development and cycle optimization

▪ Material and module scale up and manufacturing

▪ Design and fabrication of pilot O2 production system

▪ Parametric and long-term testing

▪ Techno-economic analysis
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Development Roadmap
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Project team
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Materials Scale-up



Bio-Inspired O2 Sorbent Material Development Summary
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TGA Cyclic O2 Sorption of RTI’s RTI-O2Sorb1 vs. Commercial Co-Salen
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RTI-O2Sorb1_Activated at 100 °C

RTI-O2Sorb1_Activated at 120 °C

RTI-O2Sorb1_Activated at 150 °C

RTI-O2Sorb1_Activated at 170 °C



Progress on Scale-up of RTI-O2Sorb
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✓ Successfully repeated batch synthesis for maximum O2 sorption performance

(reversible O2 uptake of 1~1.5 wt% with powder sample after activation at 170 oC)

✓ Successfully synthesized powder material with same performance using Schlenk line

(which allows large batch synthesis)

✓ Successfully scaled up powder material synthesis with same sorption performance

(20g → 40 g → 120 g → 240 g per batch) 



ExtrusionGranulation Pelletization
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Agglomeration of Powder into Structured Form



Optimization of Extrudate Formulation



Extrudate Formation Characteristics

11

0

2

4

6

8

10

12

14

C
ru

s
h

 s
tr

e
n

g
th

 (
N

/m
m

)

Recipe

BA C D E

Key characteristics of Forming Extrudate:
• O2 capacity, mechanical strength, size

Key variables of Forming Extrudate:
• binder ratios and solvent 

• extrusion pressure and temperature, drying 

temperature

Binder 
(wt%) Density (g/cc) Dia. (mm) 

Length 
(mm) 

Crush 
strength 
(N/mm) 

Dynamic 
oxygen capacity 
(wt%) 

16.7 0.55-0.62 1.2-1.5 2.0-10.0 8.0-12.0 0.8-1.2 
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Sample: 14186-172
Size:  66.1110 mg
Method: jpmethod 030 Ar-O2
Comment: 1.1 mm extrudate

TGA
File: C:...\JP tests 724\14186-172.001

Run Date: 11-Mar-2020 15:00
Instrument: TGA Q500 V20.13 Build 39

Universal V4.5A TA Instruments

1.10wt% @ Cycle 10



TGA Profile of Extrusion Shaped RTI-O2Sorb (crushed to 300~425 µm)
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Sample: 14186-123B
Size:  27.7990 mg
Method: jpmethod 030 Ar-O2
Comment: extrudate and crushed sived 14186-123B N2 dried

TGA
File: C:...\JP tests 724\14186-123B.001

Run Date: 18-Sep-2019 17:37
Instrument: TGA Q500 V20.13 Build 39

Universal V4.5A TA Instruments

10 min cycle 

0.89wt%

10 min cycle 

1.25wt%



Exposure/Aging Testing

• 2.62 vol% H2O (g), balance N2

• 45d exposed, similar to long term cycling

• 1.5% O2,19.5 CO2, balance N2

• Exposed 36d – no degradation

• 2.62 vol% H2O (g), 20.40% O2, balance N2

• Similar to long term cycling in TGA

• 99% vol%  O2, , balance N2

• Some degradation through day 12, 

• day 30 similar to day 12 ( See graphic to left)

 

Figure 5.  O2 and N2 sorption/desorption isothermal curves with different aging time: (a) fresh; (b) 12  
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Forming of Structured Sorbents

Air Liquide Objectives:

• Develop novel structured adsorbents production techniques using conventional sorbent materials

• Apply and adapt the techniques developed on conventional adsorbents to the novel oxygen-binding

adsorbent materials

• Manufacture and ship 2 to 4 structured adsorbers for pilot testing based on novel oxygen-binding adsorbent

• Support activities (e.g. Pilot design, Techno-Economic Analysis)



Sorbent and Structured Sorbent Module Development and Characterization
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Focus on Traditional Materials

• Air Liquide BP1 objectives successfully met on time (by June 30th, 2019)

• Formulations were developed and characterized for (1) air dehumidification and (2) for

conventional nitrogen (N2)-binding adsorbent

• Activation protocols for each adsorbent formulation were developed

• Forming techniques to produce structured beds were developed

Adapting Method to RTI Sorbent

• Forming techniques and activation tool were scaled up for beds of up to 1 kilogram

• Reviewed and provided feedback on the pilot design

• Explored adapting formulation and forming techniques to novel oxygen-binding adsorbent.

Multiple samples were received from RTI, characterized and used to support adaptation-

work on formulation and forming



Overall Approach

• Conventional O2 VSA➔ uses 2 adsorbents

• Top adsorbent used to capture N2

• Bottom adsorbent used for air drying

• Structured beds made of elementary shapes

• Elementary shapes produced by combining adsorbent

powder and binder

Sorbent and Structured Sorbent Module Development and Characterization
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Air Drying / Multi-Steps Approach

• 2 options: activated alumina (AA) or silica gel (SG)

• SG powder selected based on its highest water capacity

• SG powder formed with a binder into elementary shapes



Air Drying / Multi-Steps Approach

• H2O capacity of SG elementary shapes meets expectations

• Small scale structured SG-bed formed and characterized

– H2O breakthough curve comparable to conventional beaded bed

– Pressure drop comparable to conventional beaded bed

Sorbent and Structured Sorbent Module Development and Characterization
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N2 Adsorbent / Multi-Steps Approach

• Various zeolites typically used as N2 binding

adsorbents

• Selection of zeolite powder

• Forming with binder

• High temperature activation

• Similar N2 capacity & selectivity compared to

commercial adsorbents

• Faster kinetics

Sorbent and Structured Sorbent Module Development and Characterization
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Adaptation Work on Novel O2 Binding Adsorbent

• Goal: form structured bed with novel adsorbent by adapting techniques developed

with traditional sorbents

• Focused on producing an advantageous elementary shape while managing specific

limitations of novel adsorbent

• An advantageous elementary shape is fast to produce and can yield low pressure

drop once formed into a structured bed

• Performance of the formed adsorbent is checked by running N2/O2 isotherms on

elementary shapes

• Forming of the novel O2 binding adsorbent was unable to achieve mechanical

strength for full module forming

• Focused on extrudate formations

Sorbent and Structured Sorbent Module Development and Characterization
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Novel powder of O2 binding adsorbent
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Cycle Modeling



Development of a vacuum pressure-swing adsorption (VPSA) full-order solver
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Optimization

Process modeling

• Competitive adsorption equilibria modeled w/ IAST

• Linear driving-force (LDF) approximation for mass transfer

• 1D PDE system describing transient fixed-bed 

adsorber equations for 7 state variables: gas-phase 

compositions, adsorbed-phase concentrations, 

pressure, bed & casing temperatures

• Coded in MATLAB

• Solved numerically w/ Finite Volume Method (FVM)

Adsorption equilibria

• Multi-objective optimization of relevant VPSA performance 

variables using genetic & surrogate-based algorithms

• Applied a short-cut 

method to test IAST 

implementation and 

obtain preliminary 

assessment for the 

oxygen-binding 

adsorbent

• First-principles heat transfer modeling considered



Process modeling results
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• Dynamic column breakthrough (DCB)

Flue-gas separation results for model validation

• 4-step VPSA w/ LPP for heavy-product recovery

On-going sub-tasks

• Implementation of 6-step cycle to simulate the operation 

of the air separation skid under construction 

• Efficiency improvements of IAST calculations to speed-up 

optimization runs

• Implementation & execution of multi-objective 

optimization runs for 4-step and 6-step cycles to identify 

suitable operating conditions
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Integrated Test Skid



10 kg Pilot Modular System Process Flow Diagram
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• O2 production rate

• O2 purity

• Cycle optimization

• Bed size factor

• Unit power consumption

• Material stability

• Techno-economic analysis 

for O2 cost projectionHouse Air

Vent

RTI INTERNATIONAL

TAC DIVISION

Drawing Name

RTI O2 Testing System

Pressure Swing Adsorber

1000216240.000.005
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Kg Extrudate Production

Produced 2.4 kg of O2 Sorb in extrudate form

- Due to size limitations of equipment this was performed in 150-250 gm batches

Forming Drying Sizing



Kg Extrudate Characterization

Key characterizations were O2 capacity under standard TGA test and crush strength

- Some variation from batch to batch

Target was> 1.0 wt% in TGA testing for goal of 

achieving > 0.5 wt% working capacity
Target was > 5 N/mm in axial crush strength 

similar to commercial materials of similar structure



10 kg Pilot Modular System Build
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10 kg Pilot Modular System Controls
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System Characterization – Breakthrought Testing
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Valve Sequence 
1-Pressurization
2-Adsorption
3-Blowdown
4-Product Reflux
5-Evacutation

Example Parameter Set Test

-5

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000

Fl
o

w
 R

at
e

 (
SL

P
M

)

O
2

 P
ro

d
u

ct
 P

u
ri

ty
 (

vo
l%

)

Time (s)

5bar, V-310 Sorbent

O2 Product Purity O2 Product Flow Rate Air Feed Flow Rate



TEA Refinement

▪ Data from the 10 kg/d test bed will provide key data for sorption/desorption kinetics at relevant 

conditions

– O2-binding sorbent data will be used for cycle modeling and optimization by GTRC

– N2-binding, if tested, will be modeled by Air Liquide

▪ Air Liquide will provide input module costs

▪ System design will be updated from DE-FE0027995 (10 TPD design) to incorporate 

– Refined sizing and utilities

– Update utilities and equipment cost

– Update modular construction costs

– Determine overall O2 production cost
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For DOE Internal Use Only



Outcomes

Results

▪ Converted RTIO2Sorb synthesis from glove box to scalable protocol

▪ Developed structured sorbent modules with N2 sorbents

▪ Developed O2 sorbent VPSA cycle model

▪ Design and fabricated of 10 kg/d testing system

Next step 

▪ Integrated 10 kg/d system testing

▪ Refining process modeling for large scale design and cost

Future

▪ Focus on improving performance qualities of extrudate

▪ Sorbent powder properties improvement for structure formation

▪ Catalyst manufacturing development

▪ Large pilot-scale testing or 1 TPD prototype
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Enable small-scale 

applications of oxygen such 

as 10-30MW gasifiers or 1 to 

10 TPD systems by providing 

air separation at small-scale 

matching air separation cost 

of larger cryogenic 

separation systems.
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