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Project Objectives

* Develop radically engineered modular air separation system
(REM-ASU) for small-scale coal gasifiers (1-5 MW)

* Achieve air separation under a cyclic redox scheme using
advanced mixed-oxide based oxygen sorbents (OS)

* Reduce 30% energy consumption for air separation using REM-
ASU compared to state-of-the-art cryogenic air separation
process

 Demonstrate the modular air separation technology to achieve
the DOE goal to support the oxidant feed of an oxygen-blown
REMS gasifier scaled to a range of 1 to 5 MW
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Technology benchmarking

Cryogenic Chemical REMS Process
Looping (Ideal) | Model

Status mature developing Developing
Economic range (sTPD) >20 Undetermined Undetermined
Energy consumption 0.791 ~0.2* <0.54

(MJ/kg O,)

Thermodynamic efficiency 25% >75% >36%

(%)

Oxygen purity (%) 99+ 99+ 99+

By product capability Excellent Poor Poor

Chemical looping air separation has the potential to be
highly energy efficient

* Process analysis with idealized assumptions by Moghtaderi, et al. Energy Fuels, 2010, 24, 190-198.
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Status of Project

Status at beginning of project:

* Developed (high temperature) oxygen sorbents (OSs) with high oxygen capacity
and reaction kinetics, tested in a thermogravimetric analyzer (TGA)

* Preliminary process analysis.
Current status of project:

* Developed and demonstrated both “high temperature” (>750 °C) and “low
temperature” OSs (400 — 600 °C).

» Scalable production of oxygen sorbents: produced five, 1 kg/batch OS.
Performed extensive sorbent testing.

* Performed computational screening for sorbent optimization.

* Developed a preliminary REM-ASU design with energy consumption of 0.23-0.54
MJ/kg O,, 32-70% less comparing to benchmark cryogenic air separation.

e 10,000 cycles with <3% degradation, optimized operating conditions for >95%
oxygen purity, developed a high-fidelity ASU model for system optimization.
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Journal Publications

= Wang, Xijun, et al. "Net Electronic Charge as an Effective Electronic Descriptor for Oxygen
Release and Transport Properties of SrFeO5-Based Oxygen Sorbents." Chemistry of Materials,
2021, 33, 7, 2446-2456.

= Jian Dou, Emily Krzystowczyk, Xijun Wang, Thomas Robbins, Liang Ma, Xingbo Liu, and
Fanxing Li. A and B-site Co-Doped SrFeO; Oxygen Sorbents for Enhanced Chemical Looping
Air Separation ChemSusChem 2020, 13, 385-393.

= Emily Krzystowczyk, Xijun Wang, Jian Dou, Vasudev Haribal, Fanxing Li. Substituted SrFeO; as
Robust Oxygen Sorbents for Thermochemical Air Separation: Correlating redox performance
with compositional and structural properties. Physical Chemistry Chemical Physics 2020, 22,
8924-8932.

= Jian Dou, Emily Krzystowczyk, Xijun Wang, Anthony R Richard, Thomas Robbins, and Fanxing
Li. Sr, Ca,Fe; ,Co,0; s as facile and tunable oxygen sorbents for Chemical Looping Air
Separation Journal of Physics: Energy 2020, 2, 025007.

= Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, Fanxing Li*. Perovskite promoted
mixed cobalt-iron oxides for enhanced chemical looping air separation. ACS Sustainable
Chem. Eng. 2018, 6, 15528-15540.

= Amit Mishra, Tianyang Li, Fanxing Li*, and Erik Santiso*. Oxygen Vacancy Creation Energy in
Mn-Containing Perovskites: An Effective Indicator for Chemical Looping with Oxygen
Uncoupling. Chemistry of Materials, 2018, 31, 689-698.
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Conference Presentations

= Emily Krzystowczyk, Jian Dou, Xijun Wang, and Fanxing Li. Perovskite Oxygen
Sorbents for “Low Temperature” Thermochemical Air Separation: Correlating
Compositions with Redox Performance AIChE Annual Meeting, Orlando, 2019.

= Jian Dou, Emily Krzystowczyk, Amit Mishra, and Fanxing Li*. Radically Engineered
Modular Air Separation System with Tailored Oxygen Sorbents. DOE meeting,
Washington DC, 2018

= Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, and Fanxing Li*. Perovskite
Promoted Mixed Co-Fe Oxides for Enhanced Chemical Looping Air Separation. ACS
meeting, Orlando, 2019
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Gantt Chart

Task Milestone Milestone ¢ (Expected completion date) (¢ Go/No Go) Start Date End Date Ql(Q2|Q3(Q4|Q5|Q6|Q7|Q8|Q9|Q10|Qll|Ql2
1 1/1/2018 2/15/2018
1.1 Modify PMP (2/15/2018) 0
1.2 Kickoff meeting (2/15/2018) 0
2 1/1/2018 9/30/2018
2.1 Oxygen sorbent synthesis and testing (6/30/2018) 0
2.2 Oxygen sorbent characterization (9/30/2018) Q
3 4/1/2018 12/31/2018 \
3.1 Dopant effect quantification (12/31/2018) \ [
3.2 Composite effect quantification (12/31/2018) )
4 7/1/2018 3/31/2019 ‘_
4.1 Oxygen sorbent activity screening (12/31/2018) (Go/No Go) 6‘
4.2 Oxygen sorbent stability screening (3/31/2018) \O
5 1/1/2019 9/30/2019 \.
5.1 Oxygen sorbent stability demonstration (6/30/2019) 0
5.2 Oxygen sorbent fixed bed characterization (9/30/2019) Q
6 6.1 Preliminary REM-ASU design (12/31/2019) (Go/No Go) 4/1/2019  12/31/2019 N Lo
7 7.1 Synthesis scale up (3/31/2020) 10/1/2019  3/31/2020 O]
8 8.1 Pilot Scale REM-ASU demonstration (9/30/2020) (Deliverable) 10/1/2019 9/30/2020 RO
9 4/1/2020 12/31/2020
9.1 Construct techno-economic model (9/30/2020) (V]
9.2 Techno-economic report (12/31/2020) 0
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Oxygen Sorbent Development: Challenges and Opportunities
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Mixed oxides are necessary in order to match Py, of oxygen carriers with air separatlonO
conditions. Year 1 and Year 2 have resulted in promising mixed oxide sorbents suitable
for different temperature ranges.
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Scale Up Synthesis and Long-Term Testing

Milestone 7.1 (Q9) Scale-up Synthesis of OS

M3.1: Synthesize two 25 kg batch OS

T

so LI . D = Sol-gel synthesis performed
“ " in-house by Thermosolv in 1
kg batches

WY | = Multi-batch approach to
" produce 25 kg sorbents

= Five different compositions
were prepared/tested.

THERMOSOLY (LC :
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Scale Up Synthesis and Long-Term Testing

Milestone 8.1 (Q11) Sorbent Stability

M3.2 Produce >95% pure O, over 2000 cycles with less than 10%
decrease in oxygen capacity

( 100 W——-
=y N
< 60 -
>
5
2 40
o
20 H
0 T T T T T
0 2000 4000 6000 8000 10000
Cycle

SCFC8246 is stable for 10,000 cycles oxygen production at 25 psig
and 600 °C with cycle structure of 90s/5s/60s/1s
THERMOSOLY LG
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Scale Up Synthesis and Long-Term Testing

Effect of Flow Rate on Oxygen Productivity
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Oxygen purity increased to >95% with 3 SLPM air flow rate at
25 psi and 600 °C for SCFC8291 OS

THERMOSOLY UIC :
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Scale Up Synthesis and Long-Term Testing

Effect of Oxygen Recycle

100

Enorecycle m5srecycle m6srecycle 7s recycle

95 ~

Oxygen purity (%)
(Vo)
o

85 A
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180/5/60/1 150/5/60/1 120/5/30/1 90/5/30/1 60/5/15/1 30/5/15/1
Cycle structure-t_ ./t . (s)

Recycle of oxygen for purging increases purity >95% at 25 psi, 600 °Cand 1
SLPM for SCFC8291 sorbent

THERMOSOLY UIC .
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Scale Up Synthesis and Long-Term Testing
Effect of flow rate and oxygen recycle

100

m1SLPM m2SLPM

95 4
90 ~
85 A
80 - T .

180/5/60/1 150/5/60/1 120/5/30/1 90/5/30/1 60/5/15/1 30/5/15/1
Cycle structure-t,  /t,.. (s)

Oxygen purity (%)

Oxygen with >95% purity obtained with 2 SLPM air flow rate and 5 s cycle of
oxygen stream at 25 psi and 600 °C for SCFC8291

THERMOSOLY UIC .
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Scale Up Synthesis and Long-Term Testing

Breakthrough curve of SCFC8291 and data fitting

1.0 -

0.8 A

o 0.6 -
o
<
o
0.4 -
024 5y Tm== C/CO (simulated)
———— C/CO0 (measured)
0-0 1 j 1 1 1
0 500 1000 1500 2000
Time (s)

Best fitting of breakthrough curve for SCFC8291 at 20 psi
and 600°C with Péclet number of 400

16
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Preliminary System Design

Detailed One Dimensional Absorber Modeling

* Spatial temporal distribution of O, 0, fraction (%)
, fraction (%
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* 4-step configuration:
Pressurization (4s); Adsorption (90s); Depressurization (5s); Desorption (30s)
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Preliminary System Design

Detailed One Dimensional Absorber Modeling

Model validation
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* O, productivity: 80% data within £ 15% error; 100% data within =25% error
* O, purity: 90% data within =5% error; 100% data within == 10% error
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Preliminary System Design

Detailed One Dimensional Absorber Modeling

*  Modeling results
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* 1,=60s, 0,,=2SLM, my_, =0.1 mol/s:

* O, productivity and Power consumption: a peak value;
* Purity increases and recovery decreases
* Optimal cycle structure



NC STATE UNIVERSITY

Preliminary System Design

Detailed One Dimensional Absorber Modeling

*  Modeling results
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* t,~150s, Q,,=2SLM, m.,.=0.1 mol/s:

* O, productivity and Power consumption: a peak value;
e Purity and recovery increase with desorption time

* Optimal cycle structure
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Preliminary System Design

Detailed One Dimensional Absorber Modeling

*  Optimization
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* Power-productivity Pareto front
* Pump compression is highly energy consuming, but preferable for high productivity
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Preliminary System Design

Detailed One Dimensional Absorber Modeling

*  Optimization
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» Higher purity requires higher power consumption
*  Minimum power consumption for 95% purity: 150 kW-h/ ton O,
* Reduce the dead volume will lead to higher purity with low energy consumption
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Optimization of Oxygen Sorbent

Theoretical understanding of dopant effects for SrFeO; based

sorbents
p-band model

SrA, FeB, 0, m5=0 m5=0.125 m5=0.25 m 5=0.375
10 : 10] " " 107, )
Low A doping Medium A doping High A doping - H
x=0.125 x=0.5 . x=0.875 is n type doplng
5 u, 54 r=0.713 . 5] r=0.652 - A ﬁ A
T e
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Ae per O atom (e)

In most cases,
> n-type doping (larger Ae) — Up-shifting of Er — More negative €, — O anion less active — Higher AH (AG)
> p-type doping (smaller Ae) — Down-shifting of E — More positive £, — O anion more active — Lower AH (AG)

23
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Optimization of Oxygen Sorbent
DFT based high-throughput screening of SrFeO;-based oxygen

sorbents

SrFeO;

Sr,A;Fe B, 0y

erAl—xFeyB LyOH

The Gibbs free energies of vacancy formation of 2401 Sr,A1.
«Fe,B1,0; (A=Sr, Ca, K, Y, Ba, La, Sm; B=Fe, Co, Cu, Mn, Mg, Ni, Ti)
candidates were computed, and the ones with suitable AG were
screened for experimental verification.

Ovev\ap (T=400 and 700°C)

EaFeCo 1-0875-0125
BaFeTi-1-0875-0.125
CafeCo-1-05-05
CafelMn-1-0625-0375

LaCu-1-1

SrBaFe-0.125-0875-1
SrBaFeCo-0.125-0875-0.375-0625
SrBaFeCo-0.25-0.75-0.625-0375
SrBaFeCo-05-05-05-05
SrBaFeCo-0625-0375-05-05
SrBaFeC0-0.75-0.25-05-05
SrBaFeCo-0.75-0.25-0.75-0.25+
SrBaFeCo-0.875-0.125-0375-0625
SrBaFeCo-0875-0125-05-05
SrBaFeCu-05-05-0.75-0.25
SrBaFeMg-0375-0625-05-05
|SrBaFeMg-0.375-0625-0875-0125
SrBaFeMg-075-025-075-025
SrBaFeMg-0.875-0125-075-025
SrBaFeMn-0.125-0.875-0.75-0.25
SrBaFelMn-0.25-0.75-05-05
SrBaFeMn-0.375-0.625-025-0.75
SrBaFeMn-05-05-075-025
SrBaFeMn-0625-0375-05-05
SrBaFeMn-0.75-0.25-0.25-0.75
SrBaFeMn-0.75-0.25-0.75-0.25
SrBaFeMn-0.875-0.125-0.125-0.875
‘SrBaFeMn-0.875-0.125-0.375-0.625
SrBaFeMn-0875-0125-05-05
SrBaFeNi-0125-0875-0875-0125
SrBaFeNi-0.375-0.625-0625-0375
SrBaFeNi-0.5-05-0.75-0.25
'SrBaFeNi-0.875-0125-0.75-0.25
S1CaCo-0.75-0.25-1
SrCaFe-0875-0125-1
SrCaFeCo-0.125-0.875-025-0.75

AG@T=400°0 AG (T=700°C)

033693
036382
0.56377

034956

005621 035893

032026

022208

Overlap (=400 and 700°C)

5

SrCaFeMn-0875-0125-025-0.75
SrCaFeMn-0875-0.125-0.375-0625
SrCaFeNi-0.125-0875-0.25-0.75
SrCaFeNi-0.25-075-0.75-025
SrCaFeNi-0625-0375-0625-0375
SrCaMn-05-05-1
SrCaMn-0.875-0125-1
SrFeCo-1-0375-0.625
SrFeCo-1-0625-0.375
SrFeCu-1-075-025
StFeMn-1-025-0.75
SrFeMn-1-0375-0625
SrFeMn-1-05-05
SrFeMn-1-0625-0375
SrKCo-0875-0.125-1
SrkFe-0.625-0375-1
SrkFe-0.875-0125-1
SrkFeCo-0875-0.125-0.75-0.25+
SrkFeMg-0.875-0125-0625-0.375
SrkFeMn-0875-0.125-0.375-0625
SrkFeMn-0875-0.125-0.75-0.25
SrLaCo-0.75-0.25-1
SrlaCu-0625-0.375-1
SrLaFeCo-0875-0125-0.125-0875+
SrLaFeCo-0.875-0125-0.25-0.75
SrLaFeCo-0.875-0125-05-05
SrLaFeCu-05-05-025-075
SrLaFeCu-0.625-0.375-0625-0.375
SrlaFeCu-0.75-0.25-0625-0375
SrlaFeCu-0.875-0125-075-025
SrLaFeMg-025-075-0375-0625
SrLaFeMg-0875-0.125-075-025
SrLaFeMg-0875-0.125-0875-0.125
SrLaFeMn-0875-0.125-0.125-0875
SrLaFeNi-0375-0625-0.125-0875
SrLaFeNi-05-05-0125-0875

T e ) Ga=0g
[02503 0.37505] 0.3125.0.
03T06 05231 04315 00305 027756 045631
02352 056394 039957 001947 0348 016255
006578 0.18893 012736 005503  -0213%9 013421
00217 | 010001 004392 010069 01525 012747
01168 02378 01734 004446 019482 01194
024631 00718 020874 -004433 01354 -008987
026709 0.1885 019797 01171 -0.16091  -0.13631
012955 04198 027471 011361 | 015769 002204
019303 041837 03057 00782 0114 0.09631
03051 04179 0363 007264 01093 009093
013157 028482 02082 016554 003328 -0.06613
000106 005198 002652 -020494 021165 -0.0829
052152 02072 036947 029186 00992 0.3122
051378 015933 033655 035306 004384 015461
032613 009959 021286 010637 | 014991 002177
027688 0.2352 02002 001242 01505 -0.06%06
04351 05782 050676 017555 022575 0.20065
044088 046146 045117 020654 | 014667 017661
00851 00433 00209 020243 | 021451 020847
01057 033482 023029 -0.10413 009299 000557
02193 027336 024633 010859  -0.078  -0.0682
056372 049102 052737 031562 03658 034072
005413 024897 015155 -022745 008991  -0.15868
042866 048005 045436 010681 024468 0.17575
017304 | 049265 03384 -010557 009846 -0.00355
05669 0.54863  0.55777 034608 009996  0.2302
031725 | 012518 02212 0034 017733 007695
056318 0.15869 036094 028582 007373 0.10604
040215 032947 036581 01832 003735 0.07293
038T2 02524 03197 012097 007601 0.02248
0176 056336 034031 -0091 02681  0.08881
008061  0.52183 030122 013506 025454 005974
039941 058209 049075 015359 029215 0.22087
06218 058765 0.60747 03109 02023 025657
061531 034358 047944 036103 008200 013951
018316 052621 | 035469 -008688 014479 002895

113 promising compositions are proposed for further experimental verifications.
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High Throughput Study: Materials Tested
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Preliminary System Design

Milestone 9.2 (Q11) Confirm REM-ASU Design

= M9.2 (Q12) Confirm REM-ASU system with >30% reduction in energy
consumption compared to cryogenic ASU
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Preliminary System Design

Milestone 9.2 (Q11) Confirm REM-ASU Design

Theat source ~ 313)

Theat source

Wioss = KgcQ(

= Total work for CLAS is
a. Energy required for Gryogenic air separafion estimated to be ~0.63 MJ / kg
O2
= With “free” low grade process

heat, energy consumption can
be lowered to 0.1 MJ/kg

= REM-ASU can reduce energy
consumption by 30-70%
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Preliminary System Design

CLAS Aspen Simulation: Reactor Sizing

= Basis: a plant with a 5 MW operating
capacity

= Kinetics of SCFC 8246 at 600 C, a
reduction time of 90 seconds, an
oxidation time of 60 seconds, an
oxygen capacity of 0.5 wt%

= Oxygen sorbent requirement is 3.88
tons or 2.59 m3

= Bundled tubes configuration and 7

tubes in a packed formation, the o ey
tubes would have a diameter of 18 I =
in and a height to diameter ratio of 5

to 1, the heightis 90 in
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Steam Effects
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Total Energy: 0.632 MJ/ kg O,

Steam vaporization takes up the most energy and accounts
for the most lost work
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Effect of Driving Force
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Changing the driving force, P, difference in the reactor, leads to lower energy costs but higher bed
size factors

30



NC STATE UNIVERSITY

Sensitivity Analysis

0.632 0.781
Heat+l/__05(§(yso 0.61 l0.66
Oxidation '
Driving Force 0.59 0.87
9% >15%
Reduction 0.59 0.83
Driving Force
1% 5%

Pressure Drop 0.51 -0.58
+/- 507%
Effiency
0.5>1

0.2 0.4 0.6 0.8
Total Energy (MJ/kg O2)

Changing these factors indicates that the Efficiency coefficient has the highest impact on total energy
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REM-ASU Design and TEA

BEV = utirtly Valve
€ = Compressoc <>

Drop lidicatoe

 Valve

FH = Electric Hoates

sae ladwaor Coatzoller
Relicf Ve

X
= Pige 1D

300 Series = Product Collection Path

THERMOSOLY (LC

Equipment Designation | Recommended | Cost Estimate and Energy
and Description Vendor(s) Method: Requirement
B101 main process air
blower and associated URAI or
filtration Howden $45,000 40 kW
HX 102. Final process SPX, Xylem,
heat exchanger. Harsco $215,000 - $575,000 1,600 kW
Emerson
Vanessa Valves
BFV 100 and 200 series (107 air side, $19,000/$34,000
(qty 8) Butterfly Valves | 16" steam side) respectively ea N/A
Main Sorption/Desorption Custom
Reactors (2) fabrication $800,000 ga N/A
HX 201. Condensation SPX, Xylem,
Unit Harsco $500,000 4,150 kW
HX 202. Process heat Custom
exchanger fabrication $230,000 2,000 kW
C-301. Oxygen Rix Industries,
Compressor Gardner Denver $75,000 75 kW
ST-301 Product Storage Custom
Tank fabrication $55.000 N/A
4”CS $18/foot. 8°CS
$50/foot. 107SS
400/foot. 16"SS
Process piping Shelf Materials $750/foot. N/A
Controls, Data ABB,
Acquisition, Yokogawa,
Human/Machine Interface, | Rockwell, and SRy
Sensors Honeywell $275,000
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Outline

= Preparing Project for Next Steps
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Future work

« DFT based high throughput screening on sorbent develop has screened out a
few thousand sorbent compositions, experimental preparation/characterization
is currently under way;

» We discovered interesting dopant effect, showing that even 0.03 at.% dopant
can significantly impact sorbent performance. This phenomena is being further
investigated in detail, including Neutron Diffraction studies;

* Novel double perovskite sorbents offer high oxygen capacity and opportunity
for integrated O, compression have been investigated. It can be particularly
suitable for gasification applications;

* Refinement of the reactor model for optimized REM-ASU system design.
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Market Benefits/Assessment and Tech to Market

« REM-ASU produces low-cost oxygen compatible with modular coal
gasification

« REM-ASU can lead to 30% reduction in energy consumption comparing to
cryogenic method for air separation

« REM-ASU integrates with gasification system for low-grade heat utilization
and O, cost reduction

« REM-ASU has lower capital cost and is easy to scale up

Proof of Concept NETL Pilot Plant Design and Demonstration SRR e ELILON

v' Oxygen sorbent + Oxygen sorbent *  Secure an industrial partner ¢ Commercial demo plant built

capacity/redox optimization »  Construct and operate modular ASU for and demonstrated

lf(metlcs/stablhty +  Demonstrate 10,000-cycle 1-5 MW modular coal gasification system o Commercial scale sorbent

p:)gizgzﬁ catalyst stability *  Detailed commercial plant design production

Demonstrated * 1-3 liter/min prototype *  Engineering contractor secured for * Deployment of _REM-ASU

testbed commercial plant system or sale/license of REM-

v Preliminary * Detailed Techno-economics »  Commercial scale catalyst production ASU systems to industrial users

REM-ASU design and LCA proven

and energy

consumption

analysis

Favorable

B e N IS S TS N A o S O M B

Year 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
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Conclusions

« REM-ASU has the potential to produce low-cost oxygen
via pressure swing with oxygen sorbent materials

« REM-ASU is tailored to be compatible with 1-5 MW coal
gasifier, with the potential for >30% reduction in energy
consumption for air separation

« Low-cost oxygen reduces cost for coal gasifier
deployment, leading to cost effective CO, capture and
utilization

* Future work include TEA analysis, additional stability
test, and evaluation of oxygen sorbents selected by high
throughput DF T method.
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