Radically Engineered Modular Air Separation System with Tailored Oxygen Sorbents

Fanxing Li North Carolina State University

Project Partners: Thermosolv LLC and West Virginia University

05/04/2021

Outline

- Project Description and Objectives
- Project Update
- Preparing Project for Next Steps
- Concluding Remarks

Project Objectives

- Develop radically engineered modular air separation system (REM-ASU) for small-scale coal gasifiers (1-5 MW)
- Achieve air separation under a cyclic redox scheme using advanced mixed-oxide based oxygen sorbents (OS)
- Reduce 30% energy consumption for air separation using REM-ASU compared to state-of-the-art cryogenic air separation process
- Demonstrate the modular air separation technology to achieve the DOE goal to support the oxidant feed of an oxygen-blown REMS gasifier scaled to a range of 1 to 5 MW

Technology benchmarking

	Cryogenic	Chemical Looping (Ideal)	REMS Process Model
Status	mature	developing	Developing
Economic range (sTPD)	>20	Undetermined	Undetermined
Energy consumption (MJ/kg O ₂)	0.791	~0.2*	<0.54
Thermodynamic efficiency (%)	25%	>75%	>36%
Oxygen purity (%)	99+	99+	99+
By product capability	Excellent	Poor	Poor

Chemical looping air separation has the potential to be highly energy efficient

^{*} Process analysis with idealized assumptions by Moghtaderi, et al. Energy Fuels, 2010, 24, 190–198.

Status of Project

Status at beginning of project:

- Developed (high temperature) oxygen sorbents (OSs) with high oxygen capacity and reaction kinetics, tested in a thermogravimetric analyzer (TGA)
- Preliminary process analysis.

Current status of project:

- Developed and demonstrated both "high temperature" (>750 °C) and "low temperature" OSs (400 – 600 °C).
- Scalable production of oxygen sorbents: produced five, 1 kg/batch OS. Performed extensive sorbent testing.
- Performed computational screening for sorbent optimization.
- Developed a preliminary REM-ASU design with energy consumption of 0.23-0.54
 MJ/kg O₂, 32-70% less comparing to benchmark cryogenic air separation.
- 10,000 cycles with <3% degradation, optimized operating conditions for >95% oxygen purity, developed a high-fidelity ASU model for system optimization.

Outline

Project Description and Objectives

Project Update

- Preparing Project for Next Steps
- Concluding Remarks

Journal Publications

- Wang, Xijun, et al. "Net Electronic Charge as an Effective Electronic Descriptor for Oxygen Release and Transport Properties of SrFeO₃-Based Oxygen Sorbents." Chemistry of Materials, 2021, 33, 7, 2446–2456.
- Jian Dou, Emily Krzystowczyk, Xijun Wang, Thomas Robbins, Liang Ma, Xingbo Liu, and Fanxing Li. A and B-site Co-Doped SrFeO₃ Oxygen Sorbents for Enhanced Chemical Looping Air Separation ChemSusChem 2020, 13, 385-393.
- Emily Krzystowczyk, Xijun Wang, Jian Dou, Vasudev Haribal, Fanxing Li. Substituted SrFeO₃ as Robust Oxygen Sorbents for Thermochemical Air Separation: Correlating redox performance with compositional and structural properties. Physical Chemistry Chemical Physics 2020, 22, 8924-8932.
- Jian Dou, Emily Krzystowczyk, Xijun Wang, Anthony R Richard, Thomas Robbins, and Fanxing Li. Sr_{1-x}Ca_xFe_{1-y}Co_yO_{3-δ} as facile and tunable oxygen sorbents for Chemical Looping Air Separation Journal of Physics: Energy 2020, 2, 025007.
- Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, Fanxing Li*. Perovskite promoted mixed cobalt-iron oxides for enhanced chemical looping air separation. ACS Sustainable Chem. Eng. 2018, 6, 15528-15540.
- Amit Mishra, Tianyang Li, Fanxing Li*, and Erik Santiso*. Oxygen Vacancy Creation Energy in Mn-Containing Perovskites: An Effective Indicator for Chemical Looping with Oxygen Uncoupling. Chemistry of Materials, 2018, 31, 689-698.

Conference Presentations

- Emily Krzystowczyk, Jian Dou, Xijun Wang, and Fanxing Li. Perovskite Oxygen Sorbents for "Low Temperature" Thermochemical Air Separation: Correlating Compositions with Redox Performance AIChE Annual Meeting, Orlando, 2019.
- Jian Dou, Emily Krzystowczyk, Amit Mishra, and Fanxing Li*. Radically Engineered Modular Air Separation System with Tailored Oxygen Sorbents. DOE meeting, Washington DC, 2018
- Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, and Fanxing Li*. Perovskite Promoted Mixed Co-Fe Oxides for Enhanced Chemical Looping Air Separation. ACS meeting, Orlando, 2019

Gantt Chart

Task	Milestone	Milestone Ø (Expected completion date) (Ø Go/No Go)	Start Date	End Date	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
1			1/1/2018	2/15/2018												
	1.1	Modify PMP (2/15/2018)			٥											
	1.2	Kickoff meeting (2/15/2018)			٥											
2			1/1/2018	9/30/2018												
	2.1	Oxygen sorbent synthesis and testing (6/30/2018)				٥										
	2.2	Oxygen sorbent characterization (9/30/2018)					9									
3			4/1/2018	12/31/2018												
	3.1	Dopant effect quantification (12/31/2018)						0								
	3.2	Composite effect quantification (12/31/2018)						0								
4			7/1/2018	3/31/2019				Γ								
	4.1	Oxygen sorbent activity screening (12/31/2018) (Go/No Go)						0								
	4.2	Oxygen sorbent stability screening (3/31/2018)							0							
5			1/1/2019	9/30/2019												
	5.1	Oxygen sorbent stability demonstration (6/30/2019)								0						
	5.2	Oxygen sorbent fixed bed characterization (9/30/2019)									2					
6	6.1	Preliminary REM-ASU design (12/31/2019) (Go/No Go)	4/1/2019	12/31/2019								2.				
7	7.1	Synthesis scale up (3/31/2020)	10/1/2019	3/31/2020									40			
8	8.1	Pilot Scale REM-ASU demonstration (9/30/2020) (Deliverable)	10/1/2019	9/30/2020											20	
9			4/1/2020	12/31/2020												
	9.1	Construct techno-economic model (9/30/2020)													0	
	9.2	Techno-economic report (12/31/2020)														٥

NC STATE UNIVERSITY

Oxygen Sorbent Development: Challenges and Opportunities

Mixed oxides are necessary in order to match P_{O2} of oxygen carriers with air separation conditions. Year 1 and Year 2 have resulted in promising mixed oxide sorbents suitable for different temperature ranges.

Milestone 7.1 (Q9) Scale-up Synthesis of OS

M3.1: Synthesize two 25 kg batch OS

- Sol-gel synthesis performed in-house by Thermosolv in 1 kg batches
- Multi-batch approach to produce 25 kg sorbents
- Five different compositions were prepared/tested.

THERMOSOLV LLC

Milestone 8.1 (Q11) Sorbent Stability

M3.2 Produce >95% pure O₂ over 2000 cycles with less than 10% decrease in oxygen capacity

SCFC8246 is stable for 10,000 cycles oxygen production at 25 psig and 600 °C with cycle structure of 90s/5s/60s/1s

Effect of Flow Rate on Oxygen Productivity

Oxygen purity increased to >95% with 3 SLPM air flow rate at 25 psi and 600 °C for SCFC8291 OS

Effect of Oxygen Recycle

Recycle of oxygen for purging increases purity >95% at 25 psi, 600 °C and 1 SLPM for SCFC8291 sorbent

Effect of flow rate and oxygen recycle

Oxygen with >95% purity obtained with 2 SLPM air flow rate and 5 s cycle of oxygen stream at 25 psi and 600 °C for SCFC8291

Breakthrough curve of SCFC8291 and data fitting

Best fitting of breakthrough curve for SCFC8291 at 20 psi and 600°C with Péclet number of 400

Detailed One Dimensional Absorber Modeling

• Spatial temporal distribution of O₂

• 4-step configuration:

Pressurization (4s); Adsorption (90s); Depressurization (5s); Desorption (30s)

Detailed One Dimensional Absorber Modeling

Model validation

- O_2 productivity: 80% data within $\pm 15\%$ error; 100% data within $\pm 25\%$ error
- O_2 purity: 90% data within $\pm 5\%$ error; 100% data within $\pm 10\%$ error

Detailed One Dimensional Absorber Modeling

• Modeling results

- t_{de} =60s, Q_{air} =2SLM, m_{steam}=0.1 mol/s:
- O₂ productivity and Power consumption: a peak value;
- Purity increases and recovery decreases
- Optimal cycle structure

Detailed One Dimensional Absorber Modeling

• Modeling results

- t_{ad} =150s, Q_{air} =2SLM, m_{steam}=0.1 mol/s:
- O₂ productivity and Power consumption: a peak value;
- Purity and recovery increase with desorption time
- Optimal cycle structure

Detailed One Dimensional Absorber Modeling

• Optimization

- Power-productivity Pareto front
- Pump compression is highly energy consuming, but preferable for high productivity

Detailed One Dimensional Absorber Modeling

• Optimization

- Higher purity requires higher power consumption
- Minimum power consumption for 95% purity: 150 kW·h/ ton O_2
- Reduce the dead volume will lead to higher purity with low energy consumption

Optimization of Oxygen Sorbent

Theoretical understanding of dopant effects for SrFeO₃ based sorbents

In most cases,

- > n-type doping (larger Δe) \rightarrow Up-shifting of $E_F \rightarrow$ More negative $\varepsilon_p \rightarrow$ O anion less active \rightarrow Higher ΔH (ΔG)
- P-type doping (smaller Δe) → Down-shifting of E_F → More positive ε_p → O anion more active → Lower ΔH (ΔG)

Optimization of Oxygen Sorbent

DFT based high-throughput screening of SrFeO₃-based oxygen

Sr

Sr

The Gibbs free energies of vacancy formation of 2401 Sr_xA1_ _xFe_yB_{1-y}O₃ (A=<u>Sr, Ca, K, Y, Ba, La, Sm</u>; B=<u>Fe, Co, Cu, Mn, Mg, Ni, Ti</u>) candidates were computed, and the ones with suitable ΔG were screened for experimental verification.

Overlap (T=400 and 700°C)		$\Delta G (T = 40)$	0 °C)		$\Delta G (T = 70)$	0 °C)	Overlap (T=400 and 700°C)		$\Delta G (T = 40)$	0 °C)		$\Delta G (T = 70)$	0°C)
δ	0.25-0.375	0.375-0.5	0.3125-0.4375	0.25-0.375	0.375-0.5	0.3125-0.4375	õ	0.25-0.375	0.375-0.5	0.3125-0.4375	0.25-0.375	0.375-0.5	0.3125-0.437
BaFeCo-1-0.875-0.125	0.48271	0.33693	0.40982	-0.03574	0.28383	0.12405	SrCaFeMn-0.875-0.125-0.25-0.75	0.35706	0.52131	0.43919	0.03505	0.27756	0.15631
BaFeTi-1-0.875-0.125	0.5933	0.36382	0.47856	0.49613	0.08819	0.29216	SrCaFeMn-0.875-0.125-0.375-0.625	0.2352	0.56394	0.39957	-0.01947	0.34458	0.16255
CaFeCo-1-0.5-0.5	0.08972	0.56377	0.32674	-0.03696	0.33952	0.15128	SrCaFeNi-0.125-0.875-0.25-0.75	0.06578	0.18893	0.12736	-0.05503	-0.21339	-0.13421
CaFeMn-1-0.625-0.375	0.50979	0.4605	0.48514	0.30081	0.15275	0.22678	SrCaFeNi-0.25-0.75-0.75-0.25	-0.01217	0.10001	0.04392	-0.10069	-0.15425	-0.12747
LaCu-1-1	0.58164	0.3715	0.47657	0.07186	0.07078	0.07132	SrCaFeNi-0.625-0.375-0.625-0.375	0.11689	0.2378	0.17734	-0.04446	-0.19482	-0.11964
SrBaFe-0.125-0.875-1	0.53478	0.10298	0.31888	0.28772	-0.17794	0.05489	SrCaMn-0.5-0.5-1	0.24631	0.17118	0.20874	-0.04433	-0.1354	-0.08987
SrBaFeCo-0.125-0.875-0.375-0.625	0.14835	0.0959	0.12213	-0.19153	-0.17867	-0.1851	SrCaMn-0.875-0.125-1	0.26709	0.12885	0.19797	-0.11171	-0.16091	-0.13631
SrBaFeCo-0.25-0.75-0.625-0.375	0.38635	0.32112	0.35373	0.23514	0.00333	0.11923	SrFeCo-1-0.375-0.625	0.12955	0.41986	0.27471	-0.11361	0.15769	0.02204
SrBaFeCo-0.5-0.5-0.5-0.5	0.30449	0.59474	0.44961	0.09269	0.2085	0.15059	SrFeCo-1-0.625-0.375	0.19303	0.41837	0.3057	0.07862	0.114	0.09631
SrBaFeCo-0.625-0.375-0.5-0.5	0.03721	0.13755	0.08738	-0.18969	-0.17432	-0.182	SrFeCu-1-0.75-0.25	0.30731	0.41729	0.3623	0.07264	0.10923	0.09093
SrBaFeCo-0.75-0.25-0.5-0.5	0.23642	0.27035	0.25339	0.02808	-0.11008	-0.041	SrFeMn-1-0.25-0.75	0.13157	0.28482	0.2082	-0.16554	0.03328	-0.06613
SrBaFeCo-0.75-0.25-0.75-0.25*	0.28408	0.16514	0.22461	0.05287	-0.16683	-0.05698	SrFeMn-1-0.375-0.625	0.00106	0.05198	0.02652	-0.20494	-0.21165	-0.20829
SrBaFeCo-0.875-0.125-0.375-0.625	0.16511	0.52432	0.34472	-0.05709	0.26353	0.10322	SrFeMn-1-0.5-0.5	0.52152	0.21742	0.36947	0.29186	-0.02942	0.13122
SrBaFeCo-0.875-0.125-0.5-0.5	0.05355	0.12663	0.09009	-0.21381	-0.00867	-0.11124	SrFeMn-1-0.625-0.375	0.51378	0.15933	0.33655	0.35306	-0.04384	0.15461
SrBaFeCu-0.5-0.5-0.75-0.25	0.11351	0.19492	0.15422	-0.17456	-0.10925	-0.1419	SrKCo-0.875-0.125-1	0.32613	0.09959	0.21286	0.10637	-0.14991	-0.02177
SrBaFeMg-0.375-0.625-0.5-0.5	-0.01091	0.34401	0.16655	-0.10427	0.11638	0.00606	SrKFe-0.625-0.375-1	0.27688	0.12352	0.2002	0.01242	-0.15055	-0.06906
SrBaFeMg-0.375-0.625-0.875-0.125	0.16771	0.07822	0.12296	-0.05453	-0.11482	-0.08467	SrKFe-0.875-0.125-1	0.4351	0.57842	0.50676	0.17555	0.22575	0.20065
SrBaFeMg-0.75-0.25-0.75-0.25	-0.09957	0.45867	0.17955	-0.13136	0.19618	0.03241	SrKFeCo-0.875-0.125-0.75-0.25*	0.44088	0.46146	0.45117	0.20654	0.14667	0.17661
SrBaFeMg-0.875-0.125-0.75-0.25	0.18231	-0.06099	0.06066	-0.10135	-0.20737	-0.15436	SrKFeMg-0.875-0.125-0.625-0.375	0.0851	-0.0433	0.0209	-0.20243	-0.21451	-0.20847
SrBaFeMn-0.125-0.875-0.75-0.25	0.21511	0.52965	0.37238	-0.00363	0.24004	0.11821	SrKFeMn-0.875-0.125-0.375-0.625	0.10576	0.35482	0.23029	-0.10413	0.09299	-0.00557
SrBaFeMn-0.25-0.75-0.5-0.5	0.37246	0.3374	0.35493	0.18143	0.08588	0.13366	SrKFeMn-0.875-0.125-0.75-0.25	0.2193	0.27336	0.24633	-0.10859	-0.02782	-0.0682
SrBaFeMn-0.375-0.625-0.25-0.75	0.01613	0.25094	0.13354	-0.20936	-0.06259	-0.13598	SrLaCo-0.75-0.25-1	0.56372	0.49102	0.52737	0.31562	0.36582	0.34072
SrBaFeMn-0.5-0.5-0.75-0.25	0.17028	0.2868	0.22854	-0.07792	0.12363	0.02285	SrLaCu-0.625-0.375-1	0.05413	0.24897	0.15155	-0.22745	-0.08991	-0.15868
SrBaFeMn-0.625-0.375-0.5-0.5	0.0704	0.24001	0.15521	-0.20419	0.05717	-0.07351	SrLaFeCo-0.875-0.125-0.125-0.875*	0.42866	0.48005	0.45436	0.10681	0.24468	0.17575
SrBaFeMn-0.75-0.25-0.25-0.75	0.22292	0.58233	0.40263	0.01588	0.18357	0.09972	SrLaFeCo-0.875-0.125-0.25-0.75	0.17304	0.49265	0.33284	-0.10557	0.09846	-0.00355
SrBaFeMn-0.75-0.25-0.75-0.25	0.57074	0.49875	0.53474	0.405	0.22733	0.31616	SrLaFeCo-0.875-0.125-0.5-0.5	0.56692	0.54863	0.55777	0.34608	0.09996	0.22302
SrBaFeMn-0.875-0.125-0.125-0.875	0.34797	0.17679	0.26238	0.08093	-0.06899	0.00597	SrLaFeCu-0.5-0.5-0.25-0.75	0.31725	0.12518	0.22122	0.02344	-0.17733	-0.07695
SrBaFeMn-0.875-0.125-0.375-0.625	0.17094	0.40018	0.28556	-0.05548	0.15608	0.0503	SrLaFeCu-0.625-0.375-0.625-0.375	0.56318	0.15869	0.36094	0.28582	-0.07373	0.10604
SrBaFeMn-0.875-0.125-0.5-0.5	0.0472	0.38986	0.21853	-0.21607	0.16122	-0.02743	SrLaFeCu-0.75-0.25-0.625-0.375	0.40215	0.32947	0.36581	0.18322	-0.03735	0.07293
SrBaFeNi-0.125-0.875-0.875-0.125	-0.0962	0.19215	0.04798	-0.22659	-0.0426	-0.1346	SrLaFeCu-0.875-0.125-0.75-0.25	0.38722	0.25224	0.31973	0.12097	-0.07601	0.02248
SrBaFeNi-0.375-0.625-0.625-0.375	0.16963	0.35434	0.26199	-0.09042	0.18209	0.04584	SrLaFeMg-0.25-0.75-0.375-0.625	0.11726	0.56336	0.34031	-0.091	0.26861	0.08881
SrBaFeNi-0.5-0.5-0.75-0.25	0.08683	0.05129	0.06906	-0.18171	-0.2099	-0.19581	SrLaFeMg-0.875-0.125-0.75-0.25	0.08061	0.52183	0.30122	-0.13506	0.25454	0.05974
SrBaFeNi-0.875-0.125-0.75-0.25	0.28202	0.35396	0.31799	0.00711	0.1003	0.0537	SrLaFeMg-0.875-0.125-0.875-0.125	0.39941	0.58209	0.49075	0.15359	0.29215	0.22287
SrCaCo-0.75-0.25-1	0.19103	0.40577	0.2984	-6.57E-04	-0.00444	-0.00255	SrLaFeMn-0.875-0.125-0.125-0.875	0.62728	0.58765	0.60747	0.31092	0.20223	0.25657
SrCaFe-0.875-0.125-1	0.57668	0.57066	0.57367	0.33086	0.34956	0.34021	SrLaFeNi-0.375-0.625-0.125-0.875	0.61531	0.34358	0.47944	0.36103	-0.08201	0.13951
C+C+C+C+ 0.125 0.075 0.25 0.75	0.05631	0 59.42	0.22026	0.00000	0.00000	0.00040	01 5 M 05 05 0405 0075	0.40044	0.00004	0.05460	0.00/00	0.44470	0.00005

113 promising compositions are proposed for further experimental verifications.

High Throughput Study: Materials Tested

Visual representation of the materials tested and how they compare

Milestone 9.2 (Q11) Confirm REM-ASU Design

 M9.2 (Q12) Confirm REM-ASU system with >30% reduction in energy consumption compared to cryogenic ASU

Milestone 9.2 (Q11) Confirm REM-ASU Design

$$W_{loss} = K_{EC}Q\left(\frac{T_{heat\ source} - 313}{T_{heat\ source}}\right)$$

- Total work for CLAS is estimated to be ~0.63 MJ/kg O₂
- With "free" low grade process heat, energy consumption can be lowered to 0.1 MJ/kg
- REM-ASU can reduce energy consumption by 30-70% comparing to cryogenic air separation

CLAS Aspen Simulation: Reactor Sizing

- Basis: a plant with a 5 MW operating capacity
- Kinetics of SCFC 8246 at 600 C, a reduction time of 90 seconds, an oxidation time of 60 seconds, an oxygen capacity of 0.5 wt%
- Oxygen sorbent requirement is 3.88 tons or 2.59 m³
- Bundled tubes configuration and 7 tubes in a packed formation, the tubes would have a diameter of 18 in and a height to diameter ratio of 5 to 1, the height is 90 in

Steam Effects

Steam vaporization takes up the most energy and accounts for the most lost work

Effect of Driving Force

Changing the driving force, P_{O2} difference in the reactor, leads to lower energy costs but higher bed size factors

Sensitivity Analysis

Changing these factors indicates that the Efficiency coefficient has the highest impact on total energy

REM-ASU Design and **TEA**

Equipment Designation	Recommended	Cost Estimate and	Energy		
and Description	Vendor(s)	Method:	Requirement		
B101 main process air					
blower and associated	URAI or				
filtration	Howden	\$45,000	40 kW		
HX 102. Final process	SPX, Xylem,				
heat exchanger.	Harsco	\$215,000 - \$575,000	1,600 kW		
	Emerson				
	Vanessa Valves				
BFV 100 and 200 series	(10" air side,	\$19,000/\$34,000			
(qty 8) Butterfly Valves	16" steam side)	respectively ea	N/A		
Main Sorption/Desorption	Custom				
Reactors (2)	fabrication	\$800,000 <u>ea</u>	N/A		
HX 201. Condensation	SPX, Xylem,				
Unit	Harsco	\$500,000	4,150 kW		
HX 202. Process heat	Custom				
exchanger	fabrication	\$230,000	2,000 kW		
C-301. Oxygen	Rix Industries,				
Compressor	Gardner Denver	\$75,000	75 kW		
ST-301 Product Storage	Custom				
Tank	fabrication	\$55,000	N/A		
		4"CS \$18/foot. 8"CS			
		\$50/foot. 10"SS			
		400/foot. 16"SS			
Process piping	Shelf Materials	\$750/foot.	N/A		
Controls, Data	ABB,				
Acquisition,	Yokogawa,		5 1-337		
Human/Machine Interface,	Rockwell, and		JKW		
Sensors	Honeywell	\$275,000			

THERMOSOLY LLC

Outline

- Project Description and Objectives
- Project Update
- Preparing Project for Next Steps
- Concluding Remarks

Future work

- DFT based high throughput screening on sorbent develop has screened out a few thousand sorbent compositions, experimental preparation/characterization is currently under way;
- We discovered interesting dopant effect, showing that even 0.03 at.% dopant can significantly impact sorbent performance. This phenomena is being further investigated in detail, including Neutron Diffraction studies;
- Novel double perovskite sorbents offer high oxygen capacity and opportunity for integrated O₂ compression have been investigated. It can be particularly suitable for gasification applications;
- Refinement of the reactor model for optimized REM-ASU system design.

NC STATE UNIVERSITY

Market Benefits/Assessment and Tech to Market

- REM-ASU produces low-cost oxygen compatible with modular coal gasification
- REM-ASU can lead to 30% reduction in energy consumption comparing to cryogenic method for air separation
- REM-ASU integrates with gasification system for low-grade heat utilization and O₂ cost reduction
- REM-ASU has lower capital cost and is easy to scale up

Conclusions

- REM-ASU has the potential to produce low-cost oxygen via pressure swing with oxygen sorbent materials
- REM-ASU is tailored to be compatible with 1-5 MW coal gasifier, with the potential for >30% reduction in energy consumption for air separation
- Low-cost oxygen reduces cost for coal gasifier deployment, leading to cost effective CO₂ capture and utilization
- Future work include TEA analysis, additional stability test, and evaluation of oxygen sorbents selected by high throughput DFT method.

NC STATE UNIVERSITY

Acknowledgement

NCSU:

Dr. Jian Dou, Ms. Emily Krzystowczyk, Dr. Amit Mishra, Dr. Xijun Wang, Mr. Thomas Robbins, Dr. Runxia Cai

WVU:

Prof Xingbo Liu, Dr. Wenyuan Li, Dr. Liang Ma, Dr. Shiyue Zhu

FHERMOSOLV LLC

Drs. Vijay Seith, Beau Braunberger, Anthony Richard

NC STATE UNIVERSITY

Thank you!

Acknowledgment: "This material is based upon work supported by the Department of Energy Award Number DE-FE0031521."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."