
Radically Engineered Modular Air Separation 
System with Tailored Oxygen Sorbents

Fanxing Li
North Carolina State University

Project Partners:
Thermosolv LLC and West Virginia University

05/04/2021
1



Outline

 Project Description and Objectives

 Project Update

 Preparing Project for Next Steps

 Concluding Remarks

2



Project Objectives 

• Develop radically engineered modular air separation system 
(REM-ASU) for small-scale coal gasifiers (1-5 MW)

• Achieve air separation under a cyclic redox scheme using 
advanced mixed-oxide based oxygen sorbents (OS)

• Reduce 30% energy consumption for air separation using REM-
ASU compared to state-of-the-art cryogenic air separation 
process

• Demonstrate the modular air separation technology to achieve 
the DOE goal to support the oxidant feed of an oxygen-blown 
REMS gasifier scaled to a range of 1 to 5 MW
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Technology benchmarking 
Cryogenic Chemical 

Looping (Ideal)
REMS Process 
Model

Status mature developing Developing

Economic range (sTPD) >20 Undetermined Undetermined

Energy consumption 
(MJ/kg O2)

0.791 ~0.2* <0.54

Thermodynamic efficiency 
(%)

25% >75% >36%

Oxygen purity (%) 99+ 99+ 99+

By product capability Excellent Poor Poor

Chemical looping air separation has the potential to be 
highly energy efficient
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* Process analysis with idealized assumptions by Moghtaderi, et al. Energy Fuels, 2010, 24, 190–198.



Status of Project
Status at beginning of project:
• Developed (high temperature) oxygen sorbents (OSs) with high oxygen capacity 

and reaction kinetics, tested in a thermogravimetric analyzer (TGA)
• Preliminary process analysis.
Current status of project:
• Developed and demonstrated both “high temperature” (>750 ⁰C) and “low 

temperature” OSs (400 – 600 ⁰C).
• Scalable production of oxygen sorbents: produced five, 1 kg/batch OS. 

Performed extensive sorbent testing.
• Performed computational screening for sorbent optimization.
• Developed a preliminary REM-ASU design with energy consumption of 0.23-0.54 

MJ/kg O2, 32-70% less comparing to benchmark cryogenic air separation.
• 10,000 cycles with <3% degradation, optimized operating conditions for >95% 

oxygen purity, developed a high-fidelity ASU model for system optimization.
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Gantt Chart
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Oxygen Sorbent Development: Challenges and Opportunities

Mixed oxides are necessary in order to match PO2 of oxygen carriers with air separation 
conditions. Year 1 and Year 2 have resulted in promising mixed oxide sorbents suitable 

for different temperature ranges. 

PO2: 0.21 atm

PO2: <10-5 atm

PO2: 0.01-0.05 atm

PO2: <0.1 atm
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Milestone 7.1 (Q9) Scale-up Synthesis of OS
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M3.1: Synthesize two 25 kg batch OS 

 Sol-gel synthesis performed 
in-house by Thermosolv in 1 
kg batches

 Multi-batch approach to 
produce 25 kg sorbents

 Five different compositions 
were prepared/tested.

Scale Up Synthesis and Long-Term Testing



Milestone 8.1 (Q11) Sorbent Stability

M3.2 Produce >95% pure O2 over 2000 cycles with less than 10% 
decrease in oxygen capacity
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Effect of Flow Rate on Oxygen Productivity 
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Oxygen purity increased to >95% with 3 SLPM air flow rate at  
25 psi and 600 oC for SCFC8291 OS
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Effect of Oxygen Recycle 
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Effect of flow rate and oxygen recycle
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Breakthrough curve of SCFC8291 and data fitting
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• Spatial temporal distribution of O2

• 4-step configuration: 
Pressurization (4s); Adsorption (90s); Depressurization (5s); Desorption (30s)

Detailed One Dimensional Absorber Modeling
Preliminary System Design



• O2 productivity: 80% data within ±15% error; 100% data within ±25% error
• O2 purity: 90% data within ±5% error; 100% data within ±10% error

Detailed One Dimensional Absorber Modeling
Preliminary System Design

• Model validation
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Detailed One Dimensional Absorber Modeling
Preliminary System Design

• Modeling results
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• tad=150s, Qair=2SLM, msteam=0.1 mol/s:  
• O2 productivity and Power consumption: a peak value; 
• Purity and recovery increase with desorption time
• Optimal cycle structure 

Detailed One Dimensional Absorber Modeling
Preliminary System Design

• Modeling results
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Detailed One Dimensional Absorber Modeling
Preliminary System Design

• Optimization

• Power-productivity Pareto front
• Pump compression is highly energy consuming, but preferable for high productivity 
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Detailed One Dimensional Absorber Modeling
Preliminary System Design

• Optimization
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• Higher purity requires higher power consumption
• Minimum power consumption for 95% purity: 150 kW·h/ ton O2

• Reduce the dead volume will lead to higher purity with low energy consumption
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In most cases,

 n-type doping (larger Δe)  Up-shifting of EF More negative εp O anion less active  Higher ΔH (ΔG)

 p-type doping (smaller Δe)  Down-shifting of EF More positive εp O anion more active  Lower ΔH (ΔG)

p-band model

Theoretical understanding of dopant effects for SrFeO3 based 
sorbents

Optimization of Oxygen Sorbent
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The Gibbs free energies of vacancy formation of 2401 SrxA1-

xFeyB1-yO3 (A=Sr, Ca, K, Y, Ba, La, Sm; B=Fe, Co, Cu, Mn, Mg, Ni, Ti) 
candidates were computed, and the ones with suitable ∆G were 
screened for experimental verification.

DFT based high-throughput screening of SrFeO3-based oxygen 
sorbents

Optimization of Oxygen Sorbent

113 promising compositions are proposed for further experimental verifications.



High Throughput Study: Materials Tested
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Visual representation of the materials tested and how they compare
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Milestone 9.2 (Q11) Confirm REM-ASU Design 
 M9.2 (Q12) Confirm REM-ASU system with >30% reduction in energy 

consumption compared to cryogenic ASU 
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Flowsheet of the chemical looping air 

separation (CLAS) system

Preliminary System Design
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Milestone 9.2 (Q11) Confirm REM-ASU Design 

 Total work for CLAS is 
estimated to be ~0.63 MJ/kg 
O2

 With “free” low grade process 
heat, energy consumption can 
be lowered to 0.1 MJ/kg

 REM-ASU can reduce energy 
consumption by 30-70% 
comparing to cryogenic air 
separation
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Preliminary System Design
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CLAS Aspen Simulation: Reactor Sizing

 Basis: a plant with a 5 MW operating 
capacity

 Kinetics of SCFC 8246 at 600 C, a 
reduction time of 90 seconds, an 
oxidation time of 60 seconds, an 
oxygen capacity of 0.5 wt%

 Oxygen sorbent requirement is 3.88 
tons or 2.59 m3

 Bundled tubes configuration and 7 
tubes in a packed formation, the 
tubes would have a diameter of 18 
in and a height to diameter ratio of 5 
to 1, the height is 90 in

Preliminary System Design
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Steam Effects

Steam vaporization takes up the most energy and accounts 
for the most lost work
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Effect of Driving Force

Changing the driving force, PO2 difference in the reactor, leads to lower energy costs but higher bed 
size factors
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Sensitivity Analysis

Changing these factors indicates that the Efficiency coefficient has the highest impact on total energy31

Effiency
Coefficient

Pressure Drop

Reduction
Driving Force

Oxidation
Driving Force

Heat Loss

0.2 0.4 0.6 0.8

Total Energy (MJ/kg O2)

0.632 0.781

0.61 0.66

0.59 0.87

0.59 0.83

0.51 0.58

0.810.46
0.5à1

+/- 50%

+/- 50%

1%à5%

9%à15%
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REM-ASU Design and TEA 
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Future work

34

• DFT based high throughput screening on sorbent develop has screened out a 
few thousand sorbent compositions, experimental preparation/characterization 
is currently under way;

• We discovered interesting dopant effect, showing that even 0.03 at.% dopant 
can significantly impact sorbent performance. This phenomena is being further 
investigated in detail, including Neutron Diffraction studies;

• Novel double perovskite sorbents offer high oxygen capacity and opportunity 
for integrated O2 compression have been investigated. It can be particularly 
suitable for gasification applications;

• Refinement of the reactor model for optimized REM-ASU system design.



Market Benefits/Assessment and Tech to Market

• REM-ASU produces low-cost oxygen compatible with modular coal 
gasification 

• REM-ASU can lead to 30% reduction in energy consumption comparing to 
cryogenic method for air separation

• REM-ASU integrates with gasification system for low-grade heat utilization 
and O2 cost reduction

• REM-ASU has lower capital cost and is easy to scale up

35

REM-ASU Commercial Demo

• Commercial demo plant built 
and demonstrated

• Commercial scale sorbent 
production

• Deployment of REM-ASU 
system or sale/license of REM-
ASU systems to industrial users

Pilot Plant Design and Demonstration

• Secure an industrial partner

• Construct and operate modular ASU for 
1-5 MW modular coal gasification system

• Detailed commercial plant design

• Engineering contractor secured for 
commercial plant

• Commercial scale catalyst production 
proven

NETL

• Oxygen sorbent 
optimization

• Demonstrate 10,000-cycle 
catalyst stability

• 1-3 liter/min prototype 
testbed

• Detailed Techno-economics 
and LCA

Proof of Concept

 Oxygen sorbent 
capacity/redox 
kinetics/stability 
for oxygen 
production 
Demonstrated

 Preliminary 
REM-ASU design 
and energy 
consumption 
analysis
Favorable

Year 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029



Conclusions

• REM-ASU has the potential to produce low-cost oxygen 
via pressure swing with oxygen sorbent materials

• REM-ASU is tailored to be compatible with 1-5 MW coal 
gasifier, with the potential for >30% reduction in energy 
consumption for air separation

• Low-cost oxygen reduces cost for coal gasifier 
deployment, leading to cost effective CO2 capture and 
utilization

• Future work include TEA analysis, additional stability 
test, and evaluation of oxygen sorbents selected by high 
throughput DFT method. 
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Thank you!
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